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The Plan – Part I (70 minutes)

 The Mathematical Models
 2-stage Stochastic Programs with Recourse
 T-stage Stochastic Programs with Recourse
 Non-anticipativity and Measurability of Decisions

 Energy Infrastructure Applications of SP
 Foundations for 2-stage Programs

 Subgradients of the Expected Recourse Function
 Subgradient and Stochastic Quasi-gradient Methods
 Deterministic Decomposition (Kelley/Benders/L-

shaped)
 Stochastic Decomposition
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The Plan - Part II

 Algorithms for T-stage Programs
 Scenario Decomposition

 Progressive Hedging Algorithm 

 Tree-traversal (time-staged) methods
 Nested Benders’ Decomposition & Variants

 Discrete-time Dynamic Systems (not covered)
 Simulating Optimization (not covered)

 Multi-stage Extensions Stochastic Decomposition 

 Comparative Remarks and Conclusions

The Plan – Part II (70 minutes)
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The Mathematical Models
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2-stage Stochastic Program with Recourse

Deterministic Data

Avoids having to deal 
with Zero Prob. EventsStochastic Data

SP as a 
Large-Scale 
Linear Program
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T-stage Stochastic Program with Recourse

a.s.

Nested Expectation Formulation … a la DPDeterministic Data

Stochastic Data Non-anticipative
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What do we mean by Non-anticipativity?

Non-anticipative
Path 1

Path 2

Since paths 1 and 2 share the same history until t=2
They must also share the same decisions until t=2

Scenario 
Tree
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Observations of the Decision Process

(x0, x11, x12, x13)

(x0, x11, x12, x23)

(x0, x11, x22, x33)

(x0, x11, x22, x43)

(x0, x21, x32, x53)

(x0, x21, x32, x63)

(x0, x21, x42, x73)

(x0, x12, x42, x83)
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Probabilistic Language: Measurability

is measureable wrt to σ-algebra ℱt

If we look at       as a 
stochastic process 
then one can assign  
probability measures 
(on decisions) that 
are consistent with 
the stochastic 
process embedded in 
the scenario tree.
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What does this mean for algorithms?

Non-anticipative

For Multi-stage SP Models, it is necessary to track  decisions 
at each node of the scenario tree.  So, for
Multi-stage SD, we will track decisions by node  number.

Scenario 
Tree

x11

x12

x13

x23

x22

x33

x43

x32
x53

x63

x42

x21

x73

x83
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Matching mathematical models with algorithms

 Stochastic LPs as Linear Programs
 Specialized Factorization Methods for Simplex 

and Interior Point Methods (few scenarios) 
 Scenario Decomposition
 Progressive Hedging Algorithm 

 Tree-traversal (time-staged) methods
 Nested Benders’ Decomposition & Variants

 Simulating Optimization (time permitting)
 Stochastic Decomposition
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Energy Infrastructure 
Applications of SP
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Why Stochastic Programming in Power 
Systems? Long History 
 Reliability Metrics in wide-spread use

 Loss of Load Probability (LOLP)
 Loss of Load Expectation (LOLE)
 Expected Loss of Load Duration (ELOLD)

 Some SP References Prior to 2000
 Murphy, Sen and Soyster (1981) … Generation  Planning
 Louveaux and Smeers (1981) … Generation Planning
 Sherali, Sen and Soyster (1984) … Electricity Prices
 Prekopa and Boros (1989) … System Reliability 
 Hobbs and Maheshwari (1990) … System Planning
 Frauendorfer, Glavitsch, and Bacher (1992)  … System Operations
 Takriti, Birge and Long (1996) … Stochastic UC … SMIP 
 Takriti , Kassenbrink and Wu (2000) … Electricity Contracts

 Conference of Probabilistic Methods Applied to Power Systems 
(since the early 1990’s) 
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Economic Dispatch Problem
 Next generation power grids highly dynamic

 Distributed Storage
 Cogeneration
 Large Scale Renewable Generation
 Real-time Pricing

Mandates more proactive and fast operational systems like 
Economic Dispatch.

 The ED system updates the output levels of the committed 
generators to match the load demands in a cost-optimal manner.

 Present ED systems uses forecast of the order of 2 hours 
(myopic).
 Steep trends like wind ramping deteriorate the ED system.
 Increasing the foresight and resolution of the ED problem comes 
at the expense of additional computational complexity.
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Economic Dispatch Problem

Loads

Wind 
Generator

Thermal 
Generators
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ED Problem Formulation Features 
(V. Zavala, Argonne National Labs)
 2-stage model of a T-period application

 Decisions for first stage … played out over the next T-1 periods 
as the second stage

 Randomness in second-stage is wind
 Each stage has Cost of Generation and following 

constraints
 Generation capacity constraints
 Power Flow
 Flow Balance
 Power Flow Bounds
 Bus-angle Bounds
 Wind ramp constraints (randomness)
 Generation ramp constraints

 First stage only has generation ramp constraints (bounds)
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Foundations for 2-stage 
Programs: A Review of Basics
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 Let      be a random variable defined on a 
probability space

 Then “static” formulation of a stochastic 
program is given by

 Why call it “static”? 
 (the outcome) is revealed once, and the rest 

of the decision-model becomes deterministic
 This process may be repeated many times.

The commonly stated 2-stage SLP 
(will be stated again, as needed)
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The Recourse Function and its Expectation

 Usually, the matrix C1 is NOT fixed … For our 
presentation, we will make this assumption.  This is 
called the “Fixed-Recourse” assumption.
 Assuming that h(x0;ω) is finite, LP duality implies

 Also LP theory => h(●;ω) is piecewise linear, convex 
and moreover,
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Subgradient Method 
(Shor/Polyak/Nesterov/Nemirovsky…)

 At iteration k let      be given

 Let 

 Then,                                  where       denotes 
the projection operator on the set      of the 
decisions     and,

 Note that      is very difficult to compute!  …. 
Enter SQG!  Use an unbiased estimate of 

 How? Use a sample size of Nk:

Interchange of Expectation 
and Subdifferentiation is 
required here
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Stochastic Quasi-gradient Method (SQG) (Ermoliev/ 
Gaivoronski/…)

 At iteration k let      be given

 Replace      of the previous slide with its 
unbiased estimate

 Then,

with                       

and, in addition:
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 Strengths
 Easy to Program, no master problem, and easily 

parallelizable
 Weaknesses

 Non-adaptive step-sizes (e.g. Constant/k)
 Needs a lot of fine-tuning to determining step-size (e.g. 

Constant)
 Convergence

 Method makes good progress early on, but like other 
steepest-descent type methods, there is zig-zagging behavior

 Need ways to stop the algorithm
 Difficult because upper and lower bounds on objective values 

are difficult to obtain

Strengths and Weaknesses of Subgradient Methods
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 Let      be a random variable defined on a 
probability space

 Then “static” formulation of a stochastic 
program is given by

Kelley’s Cutting Plane/Benders’/L-shaped 
Decomposition for 2-stage SLP (Recall Problem)
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KBL Decomposition (J. Benders/Van Slyke/Wets)

 At iteration k let     , and             be given. Recall 

 Then define

 Let

 Then,                                   

Constant Term of the
Supporting Hyperplane

“Normal” of the Supporting Hyperplane
(same as the subgradient method)
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KBL Graphical Illustration

Expected Recourse 
Function

Approximation: fk-1

Approximation: fk
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Comparing Subgradient Method and KBL Decomposition

 Both evaluate subgradients

 Expensive Operation (requires solving as many second-stage 
LPs as there are scenarios)
 Step size in KBL is implicit (user need not worry)
 Master program grows without bound and looks unstable in 
the early rounds
 Stopping rule is automatic (Upper Bound – Lower Bound ≤ ε)
 KBL’s use of master can be a bottleneck for parallelization
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Regularization of the Master Problem 
(Ruszczynski/Kiwiel/Lemarechal …)

 Addresses the following issue:
 Master program grows without bound and looks unstable 

in the early rounds

 Include an incumbent     and a proximity 
measure from the incumbent, using σ >0  as a 
weight: 

 Particularly useful in case of Stochastic 
Decomposition.
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Where do we stand at this point in the Lecture? 

Feature\Method Subgradient
Method

SQG 
Algorithm

KBL 
Decomposition

Subgradient or 
Estimation

Accurate Estimation Accurate

Step Length 
Choice Required

Yes Yes No

Stopping Rules Unknown Unknown Known
Parallel

Computations
Good Good Not so good-

Good
Continuous 

Random Variables
No Yes No

First-stage Integer 
Variables

No No Yes

Second-stage 
Integer Variables

No No No

Of course for small instances, we can always try deterministic equivalents!  
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Stochastic Decomposition (Sequential 
Sampling)  Higle/Sen
 Allow arbitrarily many outcomes (scenarios) 

including continuous random variables
 Requirement: can provide a simulator
 Assume: cost coefficients are deterministic 

(although random costs will be allowed soon)
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Central Question: Scalability of each 
iteration
 If the number of scenarios is large, can we 

afford to solve all second-stage LPs to obtain 
accurate subgradient estimates? 
 No!

 Put another way: What is the smallest 
number of LPs we can solve in each iteration, 
and yet guarantee asymptotic convergence?
 The SD answer: 1!

 How?
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Approximating the recourse function 
in SD
 At the start of iteration k, sample one more 

outcome … say ωk independently  of   
 Given     solve the following LP

 Define                                and calculate for 

 Notice the mapping of outcomes        to finitely 
many dual vertices.  
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Forming the approximation of the 
Expected Recourse Function.
 The estimated “cut” in SD is given by

 To calculate this “cut” requires one LP 
corresponding to the most recent outcome  
and the “argmax” operations at the bottom of 
the previous slide

 In addition all previous cuts need to be 
updated … to make old cuts consistent with 
the changing sample size over iterations.
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Many more SD details (are skipped) … see 
Higle and Sen (1999)
 Updating previously generated subgradients
 Defining incumbents
 Using regularized approximations
 Dropping subgradients (finite master)
 Stopping rules … three phases 
 Set of dual vertices stops changing
 Incumbent objective stabilizes
 Bootstrapped estimate of distribution of duality 

gap is acceptably small
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Further comparisons including 2-stage SD

Feature\Method SQG Algorithm KBL 
Decomposition

Stochastic
Decomposition

Subgradient or 
Estimation

Estimation Accurate Estimation

Step Length Choice 
Required

Yes No Needed Not Needed

Stopping Rules Unknown Well Studied Partially Solved
Parallel

Computations
Good Not so good-

Good
Not known

Continuous 
Random Variables

Yes No Yes

First-stage Integer 
Variables

No Yes Yes

Second-stage 
Integer Variables

No No Available in a 
Dissertation

Of course for small instances, we can always try deterministic equivalents!  
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Comparisons between SD and SAA 
(Higle/Zhao accepted for publication)

Prob Approx. Value Seconds 
20Term 
(40 rvs) 

Reg. SD 254,581 
(79) 

259.30 
(31.85) 

20Term SAA 254,512 
(55) 

approx. 
10,000 

Fleet20_3 
(200 rvs) 

Reg. SD 141,749 
(18) 

293.57 
(2.45) 

Fleet20_3 SAA 141,654 
(6.5) 

approx. 
12,000 

SSN 
(80 rvs) 

Reg. SD 10.26 
(0.14) 

7491.81 
(3728.81) 

SSN SAA 10.57 
(0.28) 

approx. 
100,000 
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Why the difference in computational times 
between SD and SAA?
 If there are 1000 outcomes in the SAA 

approximations, it requires the subproblem LP 
to be solved for 1000 outcomes in every 
iteration. 

 Unlike  SAA, the subproblem in SD is solved 
for only one outcome, while approximations 
are used for other outcomes (from previous 
iterations).  This explains the difference in 
computational times.
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Comparisons between SQG and SD

 Inventory coordination instance (Herer et al 2006)
 SQG method to solve a small inventory 

transshipment problem
 Find order quantities to minimize total cost of 

inventory and transshipment
 Example has 7 outlets which can ship goods 

among themselves, if necessary
 Demand is normally distributed
 Herer et al ran the SQG method for K=3000 

iterations, using subgradient estimates with 
N=1000 simulated outcomes in each iteration
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SQG trajectory of order quantities
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SD Trajectory of Order Quantities
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Optimal Values from 20 SD Runs
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Iterations may vary  depending on the seed
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Running times for SD and SQG
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Multi-stage Stochastic 
Programming Algorithms
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Non-anticipative  Solutions by Scenario 
(Rockafellar/Wets)

(x0, x11, x12, x13)

(x0, x11, x12, x23)

(x0, x11, x22, x33)

(x0, x11, x22, x43)

(x0, x21, x32, x53)

(x0, x21, x32, x63)

(x0, x21, x42, x73)

(x0, x21, x42, x83)

Scenario 
Tree

x33

x23

x13

x43

x53

x63

x73

x83

x11

x21

x12

x22,

x32

x21
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0

1

2

3

4

5

6

7

9

8

10

11

12

13

14

Scenario 
Tree

Non-anticipative Solutions by Node

Nodal Variables: Xn
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Scenario 
Tree

Relaxing Nonanticipativity Creates Clairvoyant 
Decisions

(x0, x1, x2, x3)1

(x0, x1, x2, x3)2

(x0, x1, x2, x3)3

(x0, x1, x2, x3)4

(x0, x1, x2, x3)5

(x0, x1, x2, x3)6

(x0, x1, x2, x3)7

(x0, x1, x2, x3)8
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Progressive Hedging Algorithm:  
Coordination of Clairvoyant Decisions
 The constraints may be considered a graph

Xn – (xt)ω = 0

X0

X1

X2

X3

X4

X5

X6

No Non-anticipativity
Constraints for the 
Terminal Stage
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Dualizing for Progressive Hedging

X0

Xn – (xt)ω =0
Primal Constraints

Xn Free

= 0
Dual Constraints

Time of node n
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Dualizing for Progressive Hedging

X1

X2 Time of node n

= 0

Primal Problem

Lagrangian Dual Problem
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Regularized of the Lagrangian Dual
Regularized Lagrangian Dual Problem

Where       and      are given at the start of any iteration.
Also assume that    satisfies dual feasibility

The Progressive Hedging Strategy is Really Simple:  Fix 
Two of the Three Categories of Variables, and Optimize 
the Third in the following order: Primal        , followed by 
the Primal X (the conditional mean) and finally solve for           
.        .  Now Repeat this Procedure until the change in 
estimated solution is within acceptable range.
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Summary of the PHA Process

 Let

 Note that this minimization only involves data 
for the outcome 

 Next “minimizing” with respect to X, gives a 
new estimate     for the conditional 
expectations.  This is simply the conditional 
expectation of the new vectors 

 Finally, update the dual multipliers:
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Comments on the PHA Process

 Coordination process has no master problem –
making it highly suited for parallelization

 The Lagrange Multipliers provide ex-post  
estimates of prices or subsides for every  
scenario
 But very large search spaces because of exponentially 

many dual variables.
 The method has also been used as a heuristic 

for Stochastic Mixed-Integer Programs (see 
Watson, Wets and Woodruff, as well as PySP
(part of Coopr at Sandia).
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x11

x21

x12

x22

x32

x42

x13

x23

x83

Scenario 
Tree

Nested Benders’ Decomposition 
(Birge/Gassman/Dempster …)

Remember:  All data and conditional probabilities 
of the Multi-stage Stochastic LP are supplied 
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Nested Benders’ Decomposition 
(Birge/Gassman/Dempster …)

Information Visualization
• Upstream nodes place 
“orders”  based on a 
local decision (e.g. x22)
• Downstream nodes 
respond with prices  
(i.e. subgradients)  and 
feasibility facets

x11

x21

x12

x22

x32

x42

x13

x23

x83

Scenario 
Tree
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Notation: j  is an index for a stage 
i is an index of a node in stage j
i- (“i minus”) is an upstream node. 

Each Node of the Tree will “House” an LP

Prices (i.e. subgradients) 
supplied by downstream 
nodes
Feasibility facets
supplied  by downstream
nodes “Orders“ from 

upstream
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“Nested” Benders’ Method

 Traverse the tree solving LPs whenever 
feasible.  In this case, pass a Subgradient to 
the upstream node

 If any LP is infeasible, pass a “Feasibility 
Facet” to the upstream node.

 Question?  
 Can this algorithm be run via asynchrounous

processing,  and still converge?
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Comments on “Nested” Benders’

 Has been extended to sampling the tree (but 
you still work the same “probability”).  So, 
asymptotic convergence does NOT rely on 
subgradients that are stochastic  (Philpott
and Guan 2008)

 Extensions to Stochastic Subgradients are 
right around the corner (under revision)
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