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Outline

e Optimization models versus equilibriums
o Spatial equilibrium models
« A stochastic complementarity model
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Mathematical programming

 Maximization or minimization of a real function by choosing
values of variables from within an allowed set

max f(x)

s.t. xe X

« A large number of problem classes:
— Linear programming
— Nonlinear programming
— Integer programming
— Stochastic programming, etc.
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Optimality conditions

e Optimization problem with inequalities and equalities
majgle (x)
g(z) <0
h(x) =0

« Given that we have a convex problem the first-order

P |- R < Ry [ R 4 Vg [V a ) -GN of o &
condaitions or optimality (KK'1) IS surricient m K
— Convex feasible set

— Concave objective function for maximization / convex objective
function for minimization

Af(z)+ Ag @) A+ Ar() p=0
NTNU
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Complementarity problems

* Linear system of equations

* Nonlinear system of equations

* Linear complementarity problem

* Nonlinear complementarity problem

* Nonlinear program

* Finite-dimensional system of variational inequalities

« All of these problems can be generalized to Mixed
complementarity problems
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problem

 Problem statement
 Find a vector x such that

x>0
g+ Mz >0
2l (g+ Mz) =0

e For a given vector g and matrix M
 Denoted: LCP(q,M) m— NTNU

hTr\'l"(li’ﬂﬂ‘iﬂ“ ] T'I"I'i"irﬂ'l"'l:!'ihf n‘r
LR YV Uil i VUL AL W

Science and Technology

Y
www.nthu.no “



 Find a vector x such that:

x>0
F(z) >0
2T F(z) =0

* Applications:
— General equilibrium theory of economics, policy design and
analysis, game theory, mechanics, etc.
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Mixed Complementarity Problem

« Many practical applications generate problems where
some of the variables are nonnegative, others are

bounded and others are free
— To accommodate this flexibility, the MCP is used

 Find a vector z € [I,u] such that

z; =1; and F;(z) > 0,
x; =u; and F;(z) <0,
z; € (l;,u;) and F;(z) =0.

NTNU

hTr\'l"(li’ﬂﬂ‘iﬂ“ ] T'I"I'i"irﬂ'l"'l:!'ihf n‘r
LVAFL T U m AL LULEE VAL AFAL e

Science and Technology

Y
www.nthu.no “



Mixed Complementarity Problem

 Example (KKT for an optimization problem):

Ad(z)+ Ag@) AN+ Ar@) p=0
0>g(z) LA>0
O0=h(x)

« Complementary pairs of variables:
— Economics: the price of a commodity and excess supply
— Contact mechanics: the contact force between two variables and the
distance between them
« MCP appear in study of equilibrium problems

— Numerous applications (economics, engineering and chemistry)
NTNU
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Terminology

A feasible x satisfies the inequalities
— |If z strictly satisfies the inequalities, it is called strictly feasible

* The set of feasible vectors is called its feasible region
and is denoted FEA(q,M)

« A vector x satisfying the complementarity condition is
called complementary

e The CP is then to find a x that is both feasible and
complementary
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Versus Optlmlzatlon

— Optimization problems (via KKT-conditions)
— Game theory problems (for instance Nash-Cournot games)
— Many other problems in engineering and economics

 Theorems and algorithms developed for CP can be
applied to a large number of applications

e CPs can include problems where dual prices
(Lagrangean multipliers) appear in the primal
formulation

oommc
io
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Equilibrium Problems

« Equilibrium is a stable situation in which forces cancel one
another
— Economics: supply equals demand
— Chemistry: the forward rate and reverse rate of reaction is equal
— Physics: all forces acting on an object are balanced

— Game theory: Nash equilibrium (situation where no player has an incentive
to deviate from his strategy unilaterally)

Vi, f; (qf,qiz-) > fi (Qiaqiz')

e Formulation of equilibria:

— Normally formulated as MCP or more generally as a Variational Inequality
(V1)
— The VI is a unifying methodology for the study of equilibrium systems
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Spatial equilibrium models

e Consider at network with
— A set of suppliers (1), supplies a;
— A set of markets (J), demands b,
— Transport costs of ¢;
« Want to find a transportation schedule which
minimizes the cost of supplying all markets:

min} _ cijei;
1]
S.L. ngj < a;
J
Zmij > bj NTNU
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Example (cont.)

e Can be interpreted as a market equilibrium problem

— The dual multiplier for the supply constraint represents the price in
the supply markets (w)

— The dual multiplier for the demand constraint represents the price in
the demand markets (p)

We can then formulate the equilibrium conditions in
the following way (LCP(

Dz < a5 w; >0, w ai_zmz’j) =0
J J

0

sz'j 2 bj, pj 20, p; (bj - Z%)
? 1

w; + cij 2 Pj, Tij 2 0, T (wz' + Cij — Pj)

NTNU

RTn“lFﬂﬂ‘iﬂ“ ] T‘n'ixr.n'ne'ihr n‘r
LVAFL T U m AL LULEE VAL AFAL e

-w
0 U Science and Technology

Y
www.nthu.no “



Example (cont.)

e So far we have assumed constant demand and
supply

— Now suppose that demand and supplies are price responsive
» All markets are perfectly competitive

« An associated optimization problem can be used to
compute the equilibrium prices and quantities

» Here, formulated as an NCP
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Example (cont.)

 We would then get the following equilibrium
conditions:

>_ @iy < ajy wia;) 20, w;(a;) (ﬂi - sz‘j) =0
i

J
Z.‘Eij > bj, pj (bj) >0, pj (bj) (Z Tij — bj) =0
i i

w; (a;) + ¢ij 2 p; (bj) , @i 2> 0, @44 ('wi (a;) + cij — py (bj)) =0
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CP or optimization problem

e So far the spatial equilibrium model could have been
formulated as an optimization problem

 What if we introduce competition in a spatial
equilibrium model?
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Liberalized network industry

 Telecoms, energy, natural gas, railway, mail, ...
* Vertical separation

upstream market: network infrastructure (natural monopoly characteristics)
downstream market: sales to customers

 Many actors in downstream market:

use network infrastructure (lease, buy access, ...)
provide products, value-added services, ...
compete for customers

Nnftoan alen citheidians nf 1inctraam artnr
VJiltull QATOV \Juu\.)luuuly Ul UH\JLI AL CAULUI

(separated former monopolist)

 Downstream actors act egoistically:
make decisions which are best for them — and not for the

iIndustry (or social surplus etc.)

www.nthu.no

NTNU

hTr\'l"(li’ﬂﬂ‘iﬂ“ ] T'I"I'i"irﬂ'l"'l:!'ihf n‘r
LVAFL T U m AL LULEE VAL AFAL e

Science and Technology

A"
A1



Formulating and solving CPs

o Several articles explains how GAMS can be used to formulate
CP

— Extension of GAMS for complementarity problems arising in applied
economic analysis, Journal of Economic Dynamics and Control, Rutherford,
1995

— Traffic Modeling and Variational Inequalities using GAMS, Dirkse and
Ferris, 1997

— Complementarity Problems in GAMS and the PATH solver, Ferris and
Munson, 1998

e Solvers: PATH and MILES
e |n addition: AMPL with KNITRO
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Example from the North sea gas pipeline network

A stochastic complementarity model

e Decision structure

* Notation & model

» Generalized Nash Equilibrium
o Case results
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The North-Sea Case

1 1 1N 1 11

* Production nodes (with gas fields), transportation nodes, market
nodes

* Roles: large producers, smaller producers (modelled as a competitive
fringe), Gassco (independent system operator).
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Transportation
netwaork
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* Primary market
— Large producers have capacity booking rights
» Booking rights are more than 2 times the overall capacity
» Conflicts resolved using Capacity Allocation Key
e Tariff is fixed
 Secondary markets
— IS0 releases any available capacity
— Bilateral trades of capacity between players
— Price is negotiated
— A competitive fringe clears the secondary market
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Period 1 Period 2
I | Timeline,
Big producers /l\
- book capacity Big producers ISO
- production level - routing
- sale in the market nodes - trade of transportation
- delivery in TOP contracts capacity
- trade of transportation
capacity
N -
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Simultaneous
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« Each large producer faces a two- Period 1 Period 2

stage stochastic program with
recourse

o This is still a one level game
because the contingent strategy is
laid at the time of booking and not
changed as a result of the other
players bookings.

o Stochastic parameters:
— Spot price
— TOP volumes
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Purpose of the analysis

A

* Investigate the effect of different objectives for the ISO
— Max flow, max value and max social surplus

* Analyze the effect of stochasticity
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Price in the se dary market

[ | ] 1 101 RAT INWwL

Demand from a competitive fringe in each field g
— Comes from the profit maximization of the competitive fringe:

rlgs — MmaXx Z (pms * Tgms — tgms - CUgms)—Wg ( Z xgms)

meM meM
* The first order condition of optimality is:

(5r|gs . 5W9 (ZmEM iI?gms)

= Pms—tlgms—

=0, geg, meM,ses

6$gm3 (Swgms

We assume that the cost function (W()) is quadratic. The inverse
demand function can then be formulated as:

lgms = Pms—Cgqg Z Tam!sy 9 € g meM,sesS
m/eM

@ NTNU
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Large producers
objective function

Income from the spot markets
s ; and delivery in the TOP contracts
Cost of booking in the primary market

rll = MaXx — Z Z Tgmblgm + Z Gs { Z (pmSQZ'ms | levlms)_l

geg meM SES meM
+ Z Gs lz Z hlgms (pms g ( Z (ng’s 0 Z hl’gm’s)))}
seS geG meM m/eM el

Surplus from trade in the secondary market
for transportation capacity

Production cost

SINTEF




Large producers
constraints

blgm < Blgm7 geyg, meM,

dlgs — Z <blgm - hlgms) , gE€G, s€S,
meM

Qims T Vlms = Z (blgm - hlgms) , meM, seS,
g€y
hlgms < blgm7 g € g) m € M) S € 87

ngs+zhlgm320, geg, meM, seS.
lel
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ISO - objective function (1)

 Maximize flow (MF):

max Z Z fims

meM 1€Z(m)
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ISO — objective

A~
N
~—

 Maximize value of flow (MVF):

max > > Pms (fz'ms -2 ”Ulms)

meMieZ(m) lel
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ISO - objective

3
A~
W
~—

 Maximize social surplus (MSS):

maxXx Z Z Pms (fims — Z vlms) + Z Z PimVims

meMieZ(m) lel meMleLl

2
5 Z MCyg ( Z fgi)
gEQ 1€0(g)

The slope in the linear, aggregated supply function is given as:

1

1
Zléﬁg chg
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 Conservation of mass for the field nodes

Z fgjs: Z (zgms+zbl9m), ge g, ses

7j€0(g) meM lel

« Conservation of mass for the junction nodes

Z fgjs: Z fjm87 jedJ, ses

g€Z(j) meO(j)

e Conservation of mass for the market nodes

Z Jnms = Z (ngs‘l‘zblgm), meM,seS

neZ(m) geyg lel
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» Positive price in the secondary market

Pm—Cq ( Z (zgm’s T Z hlgm's)) >0, geg, meM

m/e M/’ lel

SINTEF




marlk

Wl 1INV IT111GAL TN

 The ISO schedules production, routing and sale in order to maximize
the social surplus of all the players in the network

* Objective function:

max Z Z (PmsQms + PimsVims) — Z Z Mclgdlgs

meMicg gEglEE
e Constraints: Z digs = Z fyiss GEG, sES
leL j€0(g)
ngjs: Z fjm& jEj,SES
geg meM
> (@ims + Vims) = Y. fimss MEM, s€S
lel FET(m)
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A generalized Nash equilibrium (GNE) is de-
fined as a point * € X that simultaneously op-
timizes all the players individual decision prob-
lems so that: z} € Kj(«*,), | € L and M(z*) >
Ny(zy, * ), z; € Kj(=*,),l € L where N : R* —
R is the objective function of player [.




e The common constraints in our model

— Defined as constraints where decision variables from more than one
player appear

Zgms + Z hlgms >0 Tgms
lel

Z fgjs = Z (ngs + Z blgm) ) Ugjs
7€0(9) meM lel

Z Jnms = Z (ngs + Z blgm) ; Ujims
neZ(m) geyg leL
pm _ Cg ( Z (ngls _I_ Z h‘lgm’s)) Z 07 Xng

m/e M’ lel
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(Quasi) Variational inequalities

Following the lines of the discussion in Harker
(1991), we define Fj(z*) = Vy,MNi(z},z*;) and

E‘/m*\ — /n‘A/m* \1' L *\T T Then the GNE
U\d/ / ,-o-,J.'Ll\d/ / TiINGL ]

may be expressed as the Quasi Variational In-
equality QVI(F,K(x)) :

F(z)!(z—2*) >0, ze K(zY), (1)
where K(z) = [];c; Ki(z_;).
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The VI solution
« Theorems 4-6 from Harker (1991)

If ' is a continuous function in the VI(F, K)
then the VI solutions are the only points in the
solution set of the QVI(F,K(x)) at which the
optimal dual variables \* € RPP for the com-
mon constraints are such that \j = A;f, j € L.
T he theorems also state that any strictly inte-
rior solution (for the common constraints) of
the QVI(F, K(x)) is a solution to the VI(F, K).
Further, if F is strictly monotone there is a
unigue solution to the VI over X, Facchinei

and Pang ( 2003), Theorem 2.3.3.
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Large producer n

Time O

Booking capacity
Price in spot market is
unknown

(contingent production and
capacity decisions)

Time 1

Price in spot market is
known

Production decison
imlemented

Sell surplus capacity
Buy addtional capacity

KKT- conditions for n two-stage
stochastic programs

I

r

r—l-

Nr
M

Independent System Operator
(1ISO)

Time O

No decision

Time 1
Routing decision
Sell spare capacity

KKT - conditions for s
deterministic
optimization problems
(this is a walit and see
problem)

9]0
I

m

ra

Competitive fringe
Time O
No decision

Time 1
Production decision

Buy capacity from I1ISO
and/or large producers

1st order optimality conditions
(wait and see)
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Network used in the analysis

2 production nodes

1 junction node

« 2 market nodes

« 2 large producers (L, and L,) are present in both production nodes

e 1 competitive fringe in each production node l %

Model solved by Path (to find VI solution) o
— Dual variables for the common constraints

are the same for all players
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Max social Max value Max flow

T VINAZN V A1 A I VINAZN 1IN VY

surplus (MVF) (MF)

(MSS)
Competitive fringe g1 (NOK) 258.49 194.79 222.22
Competitive fringe go (NOK) 704.17 704.17 704.17
Producer 1 (NOK) 3085.89 2595.33 3129.77
Producer 2 (NOK) 2435.35 2282.92 2410.73
ISO profit (NOK) 678.15 763.51 638.5
Social surplus (NOK) 7162.05 6540.72 (105 29
Flow (Sm?3) 80.32 88.85 76.35
Value of flow (NOK) 11668.39 126/0 66 11207 20

« Benchmark 7220,43

 Difficult to interpret the max flow solution because of VI solution
« MSS gives the largest total surplus in the network

« MV gives the largest value of flow
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Case 1: Changed weighting for MF

-I-I 1 1 A

« Corresponds to a change in currency from (1/100) NOK to EUR

Max flow
(MF)

Competitive fringe g1 (NOK) 174.18
Competitive fringe go (NOK) 704.17

Producer 1 (NOK) 2328.40
Producer 2 (NOK) 2097.78
ISO profit (NOK) 785.86
Social surplus (NOK) 6090.39
Flow (Sm3) 91.09
Value of flow (NOK) 13191 20
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Case 3: The effect of stochasticity

 What is the difference between a stochastic and a deterministic
setting?
— Cost of uncertainty
— Wait-and-see solution (WSS)
— Expected value of perfect information (EVPI)
— Value of stochastic solution (VSS)

— 15 scenarios
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Case 3: stochastic solution and WSS
Booking Ilimit = +oc Wait-and-see solution
Max social Max value | Max social Max value
surplus surplus
Competitive fringe g1 441.91 420.63 453.98 581.19
Competitive fringe go 621.50 637.82 726.52 786.71

Producer 1 (NOK) 3180.73 3275.30 3666.62 3462.53
Producer 2 (NOK) 2927.52 2985.92 3303.10 3124.28

ISO profit (NOK) 1505.52 1155.55 758.84 765.28
Social surplus (NOK) 8677.18 8475.30 8909.06 8719.99
Flow (Sm?3) 94.43 99.84 84.93 96.89
Value of flow (NOK) 14522.37 15040.02 | 13660.29 14830.25

« The EVPI is large for the MSS formulation

 Benchmark is 9008,59
— In the WSS solution the distance to the benchmark is only 1.1%
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Case 3. Expected result of using the
expected value solution

Max social Max value

surplus
Competitive fringe g1 (NOK) 420.73 420.63
Competitive fringe go (NOK) 613.84 696.77
Producer 1 (NOK) 3262.36 3216.85
Producer 2 (NOK) 2994.11 2892.63
ISO profit (NOK) 1235.14 1236.56
Social surplus (NOK) 151200 o 8463.44
Flow (Sm3) 95.84 99.84
Value of flow (NOK) io5c 7 BB ISEE

« We first solve a deterministic problem where the stochastic parameters were
replaced with their expected values (EVP)

» We then fixed the first stage decisions from the EVP solution and solved the
stochastic problem

* For the MSS formulation: the stochastic first stage solution is 1,77% better
than the EVP first stage solution (in the stochastic problem)
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Both the MSS and MVF have meaningful interpretation when finding a
VI solution. The max flow formulation only when we scale down the

other players objectives!

* The inclusion of stochasticity leads to inefficiencies in the network
— Both social surplus and surplus for the large producers are affected

— The flow is higher in the stochastic setting than in the wait and see
solution where booking rights are exercises just before production takes

place.
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