

A stochastic generalized nash model for natural gas transport systems

Asgeir Tomasgard

Outline

- Optimization models versus equilibriums
- Spatial equilibrium models
- A stochastic complementarity model

Mathematical programming

 Maximization or minimization of a real function by choosing values of variables from within an allowed set

 $\max_{x} f(x)$
s.t. $x \in X$

- A large number of problem classes:
 - Linear programming
 - Nonlinear programming
 - Integer programming
 - Stochastic programming, etc.

Optimality conditions

• Optimization problem with inequalities and equalities

 $\max_{x} f(x)$ $g(x) \le 0$ h(x) = 0

- Given that we have a convex problem the first-order conditions of optimality (KKT) is sufficient
 - Convex feasible set
 - Concave objective function for maximization / convex objective function for minimization

$$\Delta f(x) + \Delta g(x)^T \lambda + \Delta h(x)^T \mu = 0$$

$$0 \ge g(x) \perp \lambda \ge 0$$

$$0 = h(x)$$

NTNU Norwegian University of Science and Technology

Complementarity problems

- Linear system of equations
- Nonlinear system of equations
- Linear complementarity problem
- Nonlinear complementarity problem
- Nonlinear program
- Finite-dimensional system of variational inequalities
- All of these problems can be generalized to Mixed complementarity problems

The linear complementarity problem

- Problem statement
- Find a vector x such that

$$x \ge 0$$

 $q + Mx \ge 0$
 $x^T (q + Mx) = 0$

- For a given vector q and matrix M
- Denoted: LCP(q,M)

NTNU Norwegian University of Science and Technology

Nonlinear complementarity problem (NCP)

• Find a vector x such that:

 $x \ge 0$ $F(x) \ge 0$ $x^T F(x) = 0$

- Applications:
 - General equilibrium theory of economics, policy design and analysis, game theory, mechanics, etc.

Mixed Complementarity Problem

- Many practical applications generate problems where some of the variables are nonnegative, others are bounded and others are free
 - To accommodate this flexibility, the MCP is used
- Find a vector $x \in [l, u]$ such that

$$egin{array}{ll} x_i = l_i & and & F_i(x) > 0, \ x_i = u_i & and & F_i(x) < 0, \ x_i \in \langle l_i, u_i
angle & and & F_i(x) = 0. \end{array}$$

Mixed Complementarity Problem

• Example (KKT for an optimization problem):

$$\Delta \phi(x) + \Delta g(x)^T \lambda + \Delta h(x)^T \mu = 0$$

$$0 \ge g(x) \perp \lambda \ge 0$$

$$0 = h(x)$$

- Complementary pairs of variables:
 - Economics: the price of a commodity and excess supply
 - Contact mechanics: the contact force between two variables and the distance between them
- MCP appear in study of equilibrium problems
 - Numerous applications (economics, engineering and chemistry)

NTNU Norwegian University of Science and Technology

Terminology

- A feasible x satisfies the inequalities
 - If z strictly satisfies the inequalities, it is called strictly feasible
- The set of feasible vectors is called its feasible region and is denoted FEA(q,M)
- A vector x satisfying the complementarity condition is called complementary
- The CP is then to find a x that is both feasible and complementary

Complementarity Problems versus Optimization

- Optimization problems (via KKT-conditions)
- Game theory problems (for instance Nash-Cournot games)
- Many other problems in engineering and economics
- Theorems and algorithms developed for CP can be applied to a large number of applications
- CPs can include problems where dual prices (Lagrangean multipliers) appear in the primal formulation

Equilibrium Problems

- Equilibrium is a stable situation in which forces cancel one another
 - Economics: supply equals demand
 - Chemistry: the forward rate and reverse rate of reaction is equal
 - Physics: all forces acting on an object are balanced
 - Game theory: Nash equilibrium (situation where no player has an incentive to deviate from his strategy unilaterally)

$$\forall i, f_i\left(q_i^*, q_{-i}^*\right) \geq f_i\left(q_i, q_{-i}^*\right)$$

- Formulation of equilibria:
 - Normally formulated as MCP or more generally as a Variational Inequality (VI)
 - The VI is a unifying methodology for the study of equilibrium systems

NTNU Norwegian University of Science and Technology

Spatial equilibrium models

- Consider at network with
 - A set of suppliers (I), supplies a_i
 - A set of markets (J), demands b_i
 - Transport costs of c_{ij}
- Want to find a transportation schedule which minimizes the cost of supplying all markets:

$$egin{aligned} \min\sum_{ij}c_{ij}x_{ij}\ s.t. &\sum_j x_{ij}\leq a_i\ &\sum_i x_{ij}\geq b_j\ &x\geq 0 \end{aligned}$$

NTNU Norwegian University of Science and Technology

Example (cont.)

- Can be interpreted as a market equilibrium problem
 - The dual multiplier for the supply constraint represents the price in the supply markets (w_i)
 - The dual multiplier for the demand constraint represents the price in the demand markets (p_i)
- We can then formulate the equilibrium conditions in the following way (LCP);

Example (cont.)

- So far we have assumed constant demand and supply
 - Now suppose that demand and supplies are price responsive
 - All markets are perfectly competitive
- An associated optimization problem can be used to compute the equilibrium prices and quantities
- Here, formulated as an NCP

Example (cont.)

• We would then get the following equilibrium conditions:

$$\sum_{j} x_{ij} \le a_i, \ w_i(a_i) \ge 0, \ w_i(a_i) \left(a_i - \sum_j x_{ij}\right) = 0$$
$$\sum_{i} x_{ij} \ge b_j, \ p_j(b_j) \ge 0, \ p_j(b_j) \left(\sum_i x_{ij} - b_j\right) = 0$$
$$w_i(a_i) + c_{ij} \ge p_j(b_j), \ x_{ij} \ge 0, \ x_{ij} \left(w_i(a_i) + c_{ij} - p_j(b_j)\right) = 0$$

NTNU Norwegian University of Science and Technology

CP or optimization problem

- So far the spatial equilibrium model could have been formulated as an optimization problem
- What if we introduce competition in a spatial equilibrium model?

Liberalized network industry

- Telecoms, energy, natural gas, railway, mail, ...
- Vertical separation
 - upstream market: network infrastructure (natural monopoly characteristics)
 - downstream market: sales to customers
- Many actors in downstream market:
 - use network infrastructure (lease, buy access, ...)
 - provide products, value-added services, ...
 - compete for customers
 - often also subsidiary of upstream actor (separated former monopolist)
- Downstream actors act egoistically: make decisions which are best for them – and not for the industry (or social surplus etc.)

NTNU Norwegian University of Science and Technology

Formulating and solving CPs

- Several articles explains how GAMS can be used to formulate CP
 - Extension of GAMS for complementarity problems arising in applied economic analysis, Journal of Economic Dynamics and Control, Rutherford, 1995
 - Traffic Modeling and Variational Inequalities using GAMS, Dirkse and Ferris, 1997
 - Complementarity Problems in GAMS and the PATH solver, Ferris and Munson, 1998
- Solvers: PATH and MILES
- In addition: AMPL with KNITRO

NTNU Norwegian University of Science and Technology

Example from the North sea gas pipeline network

A stochastic complementarity model

- Decision structure
- Notation & model
- Generalized Nash Equilibrium
- Case results

The North-Sea Case

• Production nodes (with gas fields), transportation nodes, market nodes

• Roles: large producers, smaller producers (modelled as a competitive fringe), Gassco (independent system operator).

Representation of transport network

DNTNU

Transportation market structure

- Primary market
 - Large producers have capacity booking rights
 - Booking rights are more than 2 times the overall capacity
 - Conflicts resolved using Capacity Allocation Key
 - Tariff is fixed
- Secondary markets
 - ISO releases any available capacity
 - Bilateral trades of capacity between players
 - Price is negotiated
 - A competitive fringe clears the secondary market

The decision structure

DNTNU

Large producers decision problem

- Each large producer faces a twostage stochastic program with recourse
- This is still a one level game because the contingent strategy is laid at the time of booking and not changed as a result of the other players bookings.
- Stochastic parameters:
 - Spot price

DNTNU

TOP volumes

Purpose of the analysis

- Investigate the effect of different objectives for the ISO
 - Max flow, max value and max social surplus
- Analyze the effect of stochasticity

Price in the secondary market

- Demand from a competitive fringe in each field g
 - Comes from the profit maximization of the competitive fringe:

$$\Pi_{gs} = \max \sum_{m \in \mathcal{M}} \left(p_{ms} \cdot x_{gms} - t_{gms} \cdot x_{gms} \right) - W_g \left(\sum_{m \in \mathcal{M}} x_{gms} \right)$$

1

() SINTEF

The first order condition of optimality is:

$$\frac{\delta \Pi_{gs}}{\delta x_{gms}} = p_{ms} - t_{gms} - \frac{\delta W_g \left(\sum_{m \in \mathcal{M}} x_{gms}\right)}{\delta x_{gms}} = 0, \ g \in \mathcal{G}, \ m \in \mathcal{M}, \ s \in \mathcal{S}$$

We assume that the cost function (W()) is quadratic. The inverse demand function can then be formulated as:

$$t_{gms} = p_{ms} - c_g \sum_{m' \in \mathcal{M}} x_{gm's}, \ g \in \mathcal{G}, \ m \in \mathcal{M}, \ s \in \mathcal{S}$$

Large producers objective function

Large producers constraints

$$\begin{split} b_{lgm} &\leq B_{lgm}, \quad g \in \mathcal{G}, \ m \in \mathcal{M}, \\ d_{lgs} &= \sum_{m \in \mathcal{M}} \left(b_{lgm} - h_{lgms} \right), \quad g \in \mathcal{G}, \ s \in \mathcal{S}, \\ q_{lms} + v_{lms} &= \sum_{g \in \mathcal{G}} \left(b_{lgm} - h_{lgms} \right), \quad m \in \mathcal{M}, \ s \in \mathcal{S}, \\ h_{lgms} &\leq b_{lgm}, \quad g \in \mathcal{G}, \ m \in \mathcal{M}, \ s \in \mathcal{S}, \\ z_{gms} + \sum_{l \in \mathcal{L}} h_{lgms} \geq 0, \quad g \in \mathcal{G}, \ m \in \mathcal{M}, \ s \in \mathcal{S}. \end{split}$$

ISO - objective function (1)

• Maximize flow (MF):

$$\max \sum_{m \in \mathcal{M}} \sum_{i \in \mathcal{I}(m)} f_{ims}$$

ISO – objective function (2)

• Maximize value of flow (MVF):

$$\max \sum_{m \in \mathcal{M}} \sum_{i \in \mathcal{I}(m)} p_{ms} \left(f_{ims} - \sum_{l \in \mathcal{L}} v_{lms} \right)$$

ISO - objective function (3)

• Maximize social surplus (MSS):

$$\max \sum_{m \in \mathcal{M}} \sum_{i \in \mathcal{I}(m)} p_{ms} \left(f_{ims} - \sum_{l \in \mathcal{L}} v_{lms} \right) + \sum_{m \in \mathcal{M}} \sum_{l \in \mathcal{L}} P_{lm} v_{lms}$$
$$-\frac{1}{2} \sum_{g \in \mathcal{G}} MC_g \left(\sum_{i \in \mathcal{O}(g)} f_{gi} \right)^2$$

The slope in the linear, aggregated supply function is given as:

$$MC_g = \frac{1}{\sum_{l \in \widetilde{\mathcal{L}}_g} \frac{1}{2c_{lg}}}$$

() SINTEF

ISO – some of the constraints

• Conservation of mass for the field nodes

$$\sum_{j \in \mathcal{O}(g)} f_{gjs} = \sum_{m \in \mathcal{M}} \left(z_{gms} + \sum_{l \in \mathcal{L}} b_{lgm} \right), \ g \in \mathcal{G}, \ s \in \mathcal{S}$$

• Conservation of mass for the junction nodes

$$\sum_{g \in \mathcal{I}(j)} f_{gjs} = \sum_{m \in \mathcal{O}(j)} f_{jms}, \quad j \in \mathcal{J}, \ s \in \mathcal{S}$$

• Conservation of mass for the market nodes

$$\sum_{n \in \mathcal{I}(m)} f_{nms} = \sum_{g \in \mathcal{G}} \left(z_{gms} + \sum_{l \in \mathcal{L}} b_{lgm} \right), \ m \in \mathcal{M}, \ s \in \mathcal{S}$$

ISO

• Positive price in the secondary market

$$p_m - c_g \left(\sum_{m' \in \mathcal{M}'} \left(z_{gm's} + \sum_{l \in \mathcal{L}} h_{lgm's} \right) \right) \ge 0, \ g \in \mathcal{G}, \ m \in \mathcal{M}$$

Benchmark

- The ISO schedules production, routing and sale in order to maximize the social surplus of all the players in the network
- Objective function:

$$\max \sum_{m \in \mathcal{M}} \sum_{l \in \widetilde{\mathcal{L}}} (p_{ms}q_{lms} + P_{lms}v_{lms}) - \sum_{g \in \mathcal{G}} \sum_{l \in \widetilde{\mathcal{L}}} \frac{1}{2} MC_{lg} d_{lgs}^2$$

• Constraints: $\sum_{l \in \widetilde{\mathcal{L}}} d_{lgs} = \sum_{j \in \mathcal{O}(g)} f_{gjs}, \quad g \in \mathcal{G}, \quad s \in \mathcal{S}$ $\sum_{l \in \widetilde{\mathcal{L}}} f_{gjs} = \sum_{m \in \mathcal{M}} f_{jms}, \quad j \in \mathcal{J}, s \in \mathcal{S}$ $\sum_{l \in \widetilde{\mathcal{L}}} (q_{lms} + v_{lms}) = \sum_{j \in \mathcal{I}(m)} f_{jms}, \quad m \in \mathcal{M}, \quad s \in \mathcal{S}$

SINTEF

Generalized Nash Equilibrium games

A generalized Nash equilibrium (GNE) is defined as a point $x^* \in X$ that simultaneously optimizes all the players individual decision problems so that: $x_l^* \in K_l(x_{-l}^*), \ l \in \overline{L}$ and $\Pi_l(x^*) \geq \Pi_l(x_l, x_{-l}^*), \ x_l \in K_l(x_{-l}^*), l \in \overline{L}$ where $\Pi : R^{\alpha\beta} \to R$ is the objective function of player l.

Common constraints

- The common constraints in our model
 - Defined as constraints where decision variables from more than one player appear

$$z_{gms} + \sum_{l \in \mathcal{L}} h_{lgms} \ge 0 \qquad \tau_{gms}$$
$$\sum_{j \in \mathcal{O}(g)} f_{gjs} = \sum_{m \in \mathcal{M}} \left(z_{gms} + \sum_{l \in \mathcal{L}} b_{lgm} \right), \qquad u_{gjs}$$
$$\sum_{n \in \mathcal{I}(m)} f_{nms} = \sum_{g \in \mathcal{G}} \left(z_{gms} + \sum_{l \in \mathcal{L}} b_{lgm} \right), \qquad u_{jms}$$
$$p_m - c_g \left(\sum_{m' \in \mathcal{M}'} \left(z_{gm's} + \sum_{l \in \mathcal{L}} h_{lgm's} \right) \right) \ge 0, \ \chi_{gms}$$

() SINTEF

(Quasi) Variational inequalities

Following the lines of the discussion in Harker (1991), we define $F_l(x^*) = \nabla_{x_l} \Pi_l(x_l^*, x_{-l}^*)$ and $F(x^*) = (F_0(x^*)^T, \dots, F_{|L|}(x^*)^T)^T$ Then the GNE may be expressed as the Quasi Variational Inequality QVI(F, K(x)):

$$F(x^*)^T(x-x^*) \ge 0, \quad x \in K(x^*),$$
 (1)

where $K(x) = \prod_{l \in \overline{L}} K_l(x_{-l})$.

SINTEF

The VI solution

• Theorems 4-6 from Harker (1991)

If F is a continuous function in the VI(F,K)then the VI solutions are the only points in the solution set of the QVI(F, K(x)) at which the optimal dual variables $\lambda^* \in R^{p\beta}$ for the common constraints are such that $\lambda_0^* = \lambda_j^*, \ j \in \overline{L}$. The theorems also state that any strictly interior solution (for the common constraints) of the QVI(F, K(x)) is a solution to the VI(F, K). Further, if F is strictly monotone there is a unique solution to the VI over X, Facchinei and Pang (2003), Theorem 2.3.3.

NTNU

The complementarity program

 Large producer n Time 0 Booking capacity Price in spot market is unknown (contingent production and capacity decisions) 	Independent System Operator (ISO) Time 0 – No decision	 Competitive fringe Time 0 No decision
 Time 1 Price in spot market is known Production decison imlemented Sell surplus capacity Buy addtional capacity 	 Time 1 Routing decision Sell spare capacity 	 Time 1 Production decision Buy capacity from ISO and/or large producers
KKT- conditions for <i>n</i> two-stage stochastic programs	KKT - conditions for s deterministic optimization problems (this is a wait and see problem)	1st order optimality conditions (wait and see)

() SINTEF

Network used in the analysis

- 2 production nodes
- 1 junction node
- 2 market nodes
- 2 large producers (L_1 and L_2) are present in both production nodes
- 1 competitive fringe in each production node

- Model solved by Path (to find VI solution)
- Dual variables for the common constraints are the same for all players

Case 1: Results

	Max social	Max value	Max flow
	surplus	(MVF)	(MF)
	(MSS)		
Competitive fringe g_1 (NOK)	258.49	194.79	222.22
Competitive fringe g_2 (NOK)	704.17	704.17	704.17
Producer 1 (NOK)	3085.89	2595.33	3129.77
Producer 2 (NOK)	2435.35	2282.92	2410.73
ISO profit (NOK)	678.15	763.51	638.5
Social surplus (NOK)	7162.05	6540.72	7105.39
Flow (Sm^3)	80.32	88.85	76.35
Value of flow (NOK)	11668.39	12870.88	11207.20

- Benchmark 7220,43
- Difficult to interpret the max flow solution because of VI solution
- MSS gives the largest total surplus in the network
- MV gives the largest value of flow

Case 1: Changed weighting for MF

• Corresponds to a change in currency from (1/100) NOK to EUR

	Max flow (MF)
Competitive fringe g_1 (NOK)	174.18
Competitive fringe g_2 (NOK)	704.17
Producer 1 (NOK)	2328.40
Producer 2 (NOK)	2097.78
ISO profit (NOK)	785.86
Social surplus (NOK)	6090.39
Flow (Sm^3)	91.09
Value of flow (NOK)	13191.20

NTNU

Case 3: The effect of stochasticity

- What is the difference between a stochastic and a deterministic setting?
 - Cost of uncertainty
 - Wait-and-see solution (WSS)
 - Expected value of perfect information (EVPI)
 - Value of stochastic solution (VSS)
 - 15 scenarios

Case 3: stochastic solution and WSS

	Booking limit = $+\infty$		Wait-and-see solution	
	Max social	Max value	Max social	Max value
	surplus		surplus	
Competitive fringe g_1	441.91	420.63	453.98	581.19
Competitive fringe g_2	621.50	637.82	726.52	786.71
Producer 1 (NOK)	3180.73	3275.30	3666.62	3462.53
Producer 2 (NOK)	2927.52	2985.92	3303.10	3124.28
ISO profit (<i>NOK</i>)	1505.52	1155.55	758.84	765.28
Social surplus (NOK)	8677.18	8475.30	8909.06	8719.99
Flow (Sm^3)	94.43	99.84	84.93	96.89
Value of flow (NOK)	14522.37	15040.02	13660.29	14830.25

- The EVPI is large for the MSS formulation
- Benchmark is 9008,59
 - In the WSS solution the distance to the benchmark is only 1.1%

Case 3: Expected result of using the expected value solution

	Max social	Max value
	surplus	
Competitive fringe g_1 (NOK)	420.73	420.63
Competitive fringe g_2 (NOK)	613.84	696.77
Producer 1 (NOK)	3262.36	3216.85
Producer 2 (NOK)	2994.11	2892.63
ISO profit (<i>NOK</i>)	1235.14	1236.56
Social surplus (NOK)	8526.18	8463.44
Flow (Sm^3)	95.84	99.84
Value of flow (NOK)	14587.55	15040.02

- We first solve a deterministic problem where the stochastic parameters were replaced with their expected values (EVP)
- We then fixed the first stage decisions from the EVP solution and solved the stochastic problem
- For the MSS formulation: the stochastic first stage solution is 1,77% better than the EVP first stage solution (in the stochastic problem)

Conclusions

- Both the MSS and MVF have meaningful interpretation when finding a VI solution. The max flow formulation only when we scale down the other players objectives!
- The inclusion of stochasticity leads to inefficiencies in the network
 - Both social surplus and surplus for the large producers are affected
 - The flow is higher in the stochastic setting than in the wait and see solution where booking rights are exercises just before production takes place.