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Chapter 5

Capacity booking in a Transportation
Network with stochastic demand and a
secondary market for Transportation
Capacity

Abstract:
We present an equilibrium model for transport booking in a gas transporta-
tion network. The booking regime is similar to the regime implemented in
the North-Sea. The model looks at the challenges faced by the network op-
erator in regulating such a system. There are some privileged players in the
network, with access to a primary market for transportation capacity. The
demand for capacity is stochastic when the booking in the primary market
is done. There is also an open secondary market for transportation capacity
where all players participate including a competitive fringe. We consider
different objective functions for the network operator, and the difference
between setting fixed capacities and modeling the pressure constraints in a
sub-sea pipeline-network. This is modelled as a Generalized Nash Equilib-
rium using a stochastic complementarity problem.

5.1 Introduction

We study booking of transportation capacity in a natural gas network with sev-
eral large players and a competitive fringe. The offshore pipeline system in the
North-Sea provides a case for our analysis, but the model and results are interest-
ing for natural gas transportation in general. There are two booking stages in the
transport capacity market. In the first stage the large producers book capacity
within their predefined capacity rights. In the second stage there is a redistri-
bution of capacity in a bilateral secondary market, where also the competitive
fringe participates. Here the network operator can sell remaining capacity in the
system, and capacity bought in the first-stage primary market can be sold by the
producers.

The purpose of the paper is to develop a model that can be used to analyze
how different objective functions for the system operator affect the efficiency of
the transportation system. We also investigate the effect of using different model
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Chapter 5 Capacity booking in a Transportation Network...

representations of the physical properties of the transport network. Another
interesting topic is how stochasticity in the price for natural gas influences our
results. The model is based on Generalized Nash Equilibrium and is represented
as a stochastic complementarity problem. To our knowledge this is the first time
the booking system for natural gas transportation is studied using this approach.

The network operator influences the efficiency in the network through the rout-
ing. The routing decisions will also determine the capacity sold in the secondary
market. This is different from the role of the network operator compared to the
articles studying electricity networks, by for instance Yao et al. (2004) and Hu
et al. (2004) where the network operator choose the production from each pro-
ducer in order to maximize social surplus. In the North-Sea, the network operator
acts as a neutral third party.

We formulate the model as a mixed complementarity problem, see for exam-
ple Ferris & Pang (1997) and Facchinei & Pang (2003). A path-breaking paper for
the use of complementarity problems modelling economic equilibrium was Lemke
& Howson (1964). In the energy sector there are numerous examples of papers
using complementarity problems to model and solve economic equilibria. Gabriel,
Zhuang & Kiet (2005) presents a linear complementarity equilibrium model for
the North American natural gas market. Gabriel, Kiet & Zhuang (2005) presents
a multi-seasonal, multiyear mixed nonlinear complementarity problem of natu-
ral gas markets. Smeers (2003a) and Smeers (2003b) discuss the deregulation of
the electricity markets and the organization of regional electricity transmission.
In Jing-Yuan & Smeers (1999) spatial oligopolistic electricity models are given
and Generalized Nash Equilibria are found in a system with Cournot generators
and regulated transmission prices. Yao et al. (2006) presents a model of two-
settlement electricity markets using an Equilibrium Problems with Equilibrium
Constraints (EPEC). Hu et al. (2004) model strategic bidding by generators to an
ISO that is maximizing social surplus. The loop flow is taken into consideration
and shown to be important for the results. The model is an EPEC solved as an
All-KKT system in PATH. Hobbs (2001) presents Cournot models of bilateral
power markets.

In Section 5.2 we discuss the background for this article, as well as the as-
sumptions we have made. The model formulation as a stochastic Mixed Com-
plementarity Problem is presented in Section 5.3. A more detailed description of
the equilibrium conditions is given in Appendix 5.A. The properties of the model
are discussed in Section 5.4. We then move on to some numerical examples in
Section 5.5. Finally, the conclusions are given in Section 5.6.
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5.2 Problem description and assumptions

We present here the ideas and motivation for our case analysis, the assumptions
we have made and the reason for introducing them.

System in the North-Sea

We study a system with field nodes, each with a set of large producers in addition
to a competitive fridge. The producers deliver natural gas into a transportation
network passing through junction nodes and ending in market nodes. The market
for capacity in this network is managed by an independent system operator (ISO)
named Gassco. The producers book transport capacity from field to market and
can not determine the actual routing of the gas through the network. The routing
is the responsibility of the ISO. The image on the left in Figure 5.1 illustrates
the point-to-point perspective of the producers. The transportation network can
be considered as a black box for the producers. The system operator operate
the network taking into account the details in the network, as illustrated in the
image on the right in Figure 5.1.

At the Norwegian Continental Shelf (NCS) capacity distribution is done in
a primary market, and the remaining capacity after this initial distribution is
handled through a secondary market. In the secondary market, both transactions
of capacity facilitated by the ISO and bilateral transactions between shippers are
included. The secondary market is open to all qualified shippers. Only the large
producers book capacity in the primary market limited by predefined capacity
rights. This booking right depends on their need to transport induced by the
TOP contracts. The actual demand for capacity due to the TOP contracts is
uncertain until delivery. In sum, the available capacity in the primary market is
actually larger than the total capacity in the network. If a conflict arises with
respect to over-booking, a capacity allocation key is used to resolve these matters.
We have not explicitly modeled this rule in this paper.
In addition to the long term contracts for gas in the markets nodes, there are

short-term markets where gas may be sold. In this article we have assumed that
the producers may act strategically in the transport capacity market, but that
they are price-takers in the spot markets in the market nodes. This is reasonable
as Norway’s overall production is around 15% of the European consumption of
natural gas. The main market hubs are in UK, Germany, France and Belgium.
In the market hubs there are large buyers of natural gas who distribute the gas
further to either the suppliers or end-customers. In our model, the analysis ends
at the market hubs. For details regarding the liberalization of the European gas
market see European Union (1998) and European Union (2003), and for details
on the Norwegian case, see Austvik (2003).
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Chapter 5 Capacity booking in a Transportation Network...

The purpose of our model is mainly to analyze the effect different objectives
of the ISO will have on the operation of the system. The price the ISO can
take is regulated and fixed both in the primary and in the secondary market,
so its decision variables are only routing and secondary market sales of available
capacity. If we represent the ISO with a feasibility problem, the corresponding
game will have an infinite amount of equilibria. For each choice of secondary
market sales from the ISO, a solution satisfying the large producers’ equilibrium
conditions can be found. Hence we focus on the following alternatives: max flow,
max value of flow and max social surplus. In the following we assume that the
ISO does not have economic interests in the routing, and acts as a benevolent
central planner.
We also investigate how the representation of the physical networks as well

as the booking rights in the primary markets will influence the efficiency of the
network.

Figure 5.1: The field nodes are denoted by g, junction nodes by j and market
nodes by m. The gas flows from top to bottom.

Second-stage decision structure

Our model is a one level game where each of the producers decison problem
is a stochastic two-stage program with recourse (Kall & Wallace 1994). The
stochastic elements are the spot price in the markets and the quantity in the
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5.2 Problem description and assumptions

TOP-contracts. The uncertainty is modeled with scenarios (see Figure 5.3). The
decisions in the two stages are illustrated in Figure 5.2.

In the secondary market (in the second stage) we assume that the large produc-
ers and the competitive fringe make simultaneous volume decisions in a Cournot
manner. Each of the large producers recognizes that they will influence the price
for transportation capacity, but make independent volume decisions. The players
in the competitive fringe are price takers in the capacity market. Their reaction
function is expressed as their demand for transportation capacity at a given trans-
portation price. This demand is positive as long as the market price for natural
gas in a market hub is higher than the marginal production cost for the compet-
itive fringe in a field node plus the transportation price from that node to the
market.
Further, we assume that the ISO’s decisions are made simultaneously with the

producers. Hence, the ISO is a Cournot player whose volume decisions cannot
be manipulated by other players strategically. An alternative would be to model
this as a multi-leader one-follower Stackelberg game (Yao 2006) with the ISO as
a follower. A common way of modeling this follower situation, when the ISO has
a convex optimization problem, is by including the KKT-conditions for the ISO’s
routing and capacity release in the other players’ optimization problem. They
will then act strategically because they anticipate the ISO’s reaction to their own
volume decisions. In this case each player solves a mathematical program with
equilibrium constraints (MPEC, Luo et al. (1996)) and the resulting game over
all the players become an EPEC. In our approach we stay within the framework
of Mixed Complementarity Problems as all decisions are simultaneous, and a
common way of modeling this is to merge all the players KKT-conditions into
a large complementarity system. We think that the setting with simultaneous
decisions is closer to the reality of the Norwegian continental shelf. Firstly, the
players are not supposed to act strategically, for example in terms of influencing
the ISO in the transportation market. Secondly, the other players never know or
get information about the ISO’s routing decisions. This is confidential informa-
tion, and so are the booking requests, sales and production volumes of the other
players.

First-stage decision structure

In the first stage each of the large producers decides on a booking volume. This
booking decision is based on maximizing the excepted revenue for the second
stage where production and transportation strategies are made as well as trades
in the secondary market for transportation capacity.
We assume that each player makes his first-stage decisions and his second-stage

decisions simultaneously. In practice this means that the second-stage decisions
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Chapter 5 Capacity booking in a Transportation Network...

will depend on the outcomes of the stochastic variables, but the contingent strat-
egy covering all possible outcomes is made before the player observes the other
players booking. Each producer’s optimization problem is then a stochastic two-
stage program with recourse, given the other players fixed decisions. The overall
problem is still a Mixed Complementarity Problem, often called a Stochastic
Mixed Complementarity Problem because of the stochastic variables and two-
stage structure.
If, on the other hand the booking decisions had been used strategically by the

players, we would need to include the second-stage equilibrium over all the players
as a part of the booking problem in the first stage for each player. Normally this is
done by including the KKT-conditions from the second stage equilibrium in each
player’s first-stage optimization problem. In such a setting each player’s problem
would be a stochastic MPEC, where the second-stage equilibrium conditions for
each scenario is part of the first-stage optimization problem and parameterized
on the first stage decisions (Patriksson & Wynter 1999).
When the first- and second-stage decisions are made simultaneously we model

the situation where either a player does not know the other players’ booking
decisions when he makes his second-stage decisions, or he has this booking infor-
mation but does not let it influence his second stage decisions. In the Norwegian
regime with a confidential booking process, we feel that this is a sound model.
Then the only information revealed (or acted on) between the first and second
stage is the uncertainty that is resolved. This is a one level game as the scenarios
are independent of the first-stage decisions.

Figure 5.2: The sequencing of decisions.
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Figure 5.3: The scenario structure in the large producers’ decision problem
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5.3 Model

We start by introducing the notation. We then move on to a discussion of the price
of transportation capacity in the secondary market. The networks we present are
connected graphs.

Notation

Sets

N The set of all nodes in the network.
G The set of field nodes in the network.
J The set of junction nodes in the network.
M The set of market nodes in the network.
I(n) The set of nodes with pipelines going into node n

(predecessor nodes).
O(n) The set of nodes with pipelines going out of node n

(successor nodes).
L The set of large producers in the network.
L̃g The set of all producers in field g (including the

competitive fringe).
S The set of scenarios.

Indexes

n Used for nodes in general.
g Index for field nodes.
j Index for junction nodes.
m Index for market nodes.
s Scenario index.
l The index used for producers.
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Constants

Rn The maximum pressure in node n.
Rn The minimum pressure in node n.
Kij The Weymouth constant for the pipeline going from i to j.
Blgm Booking limit for producer l from field g to market m.
Plm Price in the long term contracts for producer l in market m.
Tgm Per unit tariff for transportation between field g and market m.
MC g Aggregated marginal cost parameter in field g.
Cni Capacity in the pipeline between node n and i.
cg Parameter in the cost function for the competitive fringe in field g.
clg Parameter in the cost function for producer l in field g.

Decision variables

blgm Booking in the primary market by producer l between field g and
market m.

dlgs Production in field g by producer l in scenario s.
qlms Spot sale in market m by producer l in scenario s.
hlgms Capacity between g and m traded by producer l in the

secondary market in scenario s.
fnis The flow between node n and i in scenario s.
rns The pressure in node n in scenario s.
zgms Capacity sold by the ISO in the secondary market between field g

and market m in scenario s.
tgms Price of transportation capacity between field g and market m

in scenarios s.
xgms Quantity produced in field g and sold in market m in scenario s

by the competitive fringe.

Stochastic variables and probabilities

vlms Nomination in long-term contracts in market m.
pms Spot price in market m.
φs Probability of a given scenario.

Functions

Clg (d) The cost function for producer l in field g.
Wg (y) Cost function for the competitive fringe in field g.
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Price of capacity in the secondary market
The price in the secondary market in a node is given by a demand function from
the competitive fringe in that node. We assume that the competitive fringes
in the different field nodes are independent. The competitive fringe’s demand
function for transportation capacity between field g and market m in scenario s
is then found from the profit maximization problem for the competitive fringe in
field g:

Πgs = max
∑
m∈M

(pms · xgms − tgms · xgms)−Wg

( ∑
m∈M

xgms

)
, (5.1)

where xgms is the quantity traded in spot market m by the competitive fringe in
field g in scenario s, tgms is the price of transportation capacity between g and m
in the secondary market in scenario s. Wg is the cost function in field g. In order
to find the demand function for the competitive fringe, the first order condition
for optimality is used:

∂Πgs

∂xgms
= pms − tgms −

∂Wg

(∑
m∈M xgms

)
∂xgms

= 0, g ∈ G, m ∈M, s ∈ S. (5.2)

In this article, we assume that Wg is a quadratic function. For ease of presen-
tation, we will in the following assume that the cost function for the competitive
fringe is:

Wg

( ∑
m∈M

xgms

)
=

1
2
cg ·

( ∑
m∈M

xgms

)2

(5.3)

where cg is the cost parameter for the competitive fringe in field g. Nevertheless,
all results are valid for general quadratic cost functions (and most for a general
cost function).
We model this implicitly in the large producers’ problem as an elastic demand

function. The inverse demand function is given as:

tgms = pms − cg ·
∑
m′∈M

xgm′s, g ∈ G, m ∈M, s ∈ S. (5.4)

The volume bought by the competitive fringe, xgms is given as the sum of
capacities sold by the ISO, zgms, and the large producers, hlgms. The hlgms
variable is positive when the large producers sell capacity, and negative if the
large producers buy capacity. We then have the following relation between xgms,
zgms and hlgms:
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5.3 Model

xgms = zgms +
∑
l∈L

hlgms, g ∈ G, m ∈M, s ∈ S, (5.5)

which leads to the following expression for the price in the secondary market:

tgms = pms− cg ·

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

))
, g ∈ G, m ∈M, s ∈ S. (5.6)

Since we only allow flow in one direction in our network, we need to make sure
that xgms cannot be negative.

zgms +
∑
l∈L

hlgms ≥ 0, g ∈ G, m ∈M, s ∈ S, (5.7)

where hlgms is the secondary market trades of producer l of capacity from g to m.
The inclusion of this constraint means that the decision space for each producer
depends on the other participants decisions (the other producers and the ISO).

The large producers

The income for the large producers (L) in the network comes from deliveries in
the long term contracts, sales in the spot markets and sales in the secondary
market for transportation capacity. The cost for the producers come from the
per unit tariff paid in the primary market for transportation capacity (which we
assume is independent of the large producers’ decisions), the cost of production
and from purchasing additional transportation capacity in the secondary market.
The objective function for producer l can be formulated as:

Πl = max−
∑
g∈G

∑
m∈M

Tgmblgm +
∑
s∈S

φs

[ ∑
m∈M

(pmsqlms + Plmvlms)

]

+
∑
s∈S

φs

∑
g∈G

∑
m∈M

hlgms ·

(
pms − cg ·

( ∑
m′∈M

(
zgm′s +

∑
l′∈L

hl′gm′s

)))
−
∑
s∈S

φs

∑
g∈G

Clg(dlgs)

 , (5.8)

where blgm is the booking in the primary market, Tgm is the tariff in the primary
market, φs is the probability of scenario s, pms is price in the spot market, qlms
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is volume sold in the spot market, Plm is the price in the take-or-pay contracts,
vlms is the volume in the take-or-pay contracts, hlgms is the capacity traded in
the secondary market (positive when the producer sell capacity, negative when
he buys), the price in the secondary market is given by (5.6), Clg is the cost
function for the producer and dlgs is the production. zgms is the capacity sold
by the ISO in the secondary market.
The booking constraint in the primary market is given as:

blgm ≤ Blgm, g ∈ G, m ∈M, (5.9)

where Blgm is the fixed upper limit on booking for the producer. For the second
stage the following constraints are needed:

dlgs =
∑
m∈M

(blgm − hlgms) , g ∈ G, s ∈ S, (5.10)

qlms + vlms =
∑
g∈G

(blgm − hlgms) , m ∈M, s ∈ S, (5.11)

hlgms ≤ blgm, g ∈ G, m ∈M, s ∈ S, (5.12)

zgms +
∑
l∈L

hlgms ≥ 0, g ∈ G, m ∈M, s ∈ S. (5.13)

Constraint (5.10) make sure that the producer has booked enough capacity
for the production in field g. Constraint (5.11) make sure that the producer has
booked enough capacity for the total sale in market m. The two constraints also
make sure that the producer utilizes all the booked capacity. Constraint (5.12)
makes sure that the producer cannot sell more capacity than he has booked in
the primary market, and constraint (5.13) ensures that the producers cannot buy
more capacity than the ISO sells.

Independent system operator
We present three different objective function alternatives for the ISO:

• maximize flow (MF):

ΠMF
s = max

∑
m∈M

∑
i∈I(m)

fims, (5.14)

The network operator will always choose zgms in order to maximize the flow
under the constraint that all prices (for field-market combinations) must be pos-
itive (see Equation (5.26)). With this objective, the system operator will be
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indifferent with regards to prices in the market nodes and cost functions in the
field nodes.

• maximize value of flow (MVF):

ΠMVF
s = max

∑
m∈M

∑
i∈I(m)

pms ·

(
fims −

∑
l∈L

vlms

)
, (5.15)

The strength of this formulation, MVF, compared with the MF formulation is
that the ISO now routes the gas according to value. The weakness is that he has
no incentive to route according to marginal cost in the fields.
If we assume that the network operator has full information regarding the

cost functions of the participants, the ISO can take both value of flow and cost
structure in the fields into account by maximizing social surplus.

• maximize social surplus (MSS):

ΠMSS
s = max

∑
m∈M

∑
i∈I(m)

pms ·

(
fims −

∑
l∈L

vlms

)
+
∑
m∈M

∑
l∈L

Plmvlms

− 1
2

∑
g∈G

MC g ·

 ∑
i∈O(g)

fgi

2

. (5.16)

MC g is the slope of the linear aggregated supply function for field g:

MC g ·
∑

i∈O(g)

fgi. (5.17)

The supply function is found by assuming that all producers have a cost function
of the form:

Wg = clgd
2
lg, (5.18)

and that no production capacities exist. Under these assumptions, the aggregate
supply function is linear. MC g is found in the following manner:

MC g =
1∑

l∈L̃g
1

2clg

, (5.19)
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where L̃g is the set of producers L and the competitive fringe in field node g. The
aggregated supply function is found by horizontal summation of the individual
supply functions.
Between the production facilities and the market-hubs there is a transporta-

tion network. The gas molecules are transported from nodes with high pressure
to nodes with lower pressure through pipelines. The design parameters of the
pipelines (length, diameter, roughness) as well as external variables (tempera-
ture) decide how much gas is transported for a given pressure difference. The
relation between pressure in the nodes and flow in the pipelines are determined
based on the Weymouth equation, see for instance Menon (2005). For a discus-
sion of system effects on capacity related to pressure constraints see Midthun
et al. (2006).We have chosen to linearize this expression with the formulation
used in Tomasgard et al. (2007):

fij ≤ Kij
RIi√

RI2
i −ROj

2 ri −Kij
ROj√

RI2
i −RO2

j

rj . (5.20)

About 20 of these constraints that are approximating the Weymouth constraint
are used for each pipeline in order to linearize the flow around pairs of pressure
in, RIi, and pressure out, ROj . Here fij is the flow from node i to j and rn is
the pressure in node n.
In addition, constraints on the pressure level in each node must satisfied:

Rn ≤ rns ≤ Rn n ∈ N , s ∈ S, (5.21)

where Rn is the smallest allowed pressure in node n, and Rn is the largest
allowed pressure in node n.
In the numerical analysis, we will also look at an alternative formulation with

fixed capacities. In this case the pressure constraints and the Weymouth equation
are replaced with the following formulation:

fnis ≤ Cni, n ∈ N , i ∈ O(n). (5.22)

In the following we will refer to this formulation as Independent Static Flow
(ISF), while the Weymouth formulation is referred to as WF. It is non-trivial to
determine appropriate values for the ISF capacities. See Midthun et al. (2006) for
a discussion. In this paper we solve an optimization model (with WF formulation)
where the objective is to maximize the throughput in the network. The ISF
capacities are then set equal to the resulting flow pattern in this model. The
WF formulation is a relaxation of this ISF formulation, but it also represents the
real system more precisely as it includes the flexibility of moving bottlenecks by
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adjusting pressures. The ISF formulation is more restricted but any increase in
its capacities will allow a solution which is infeasible in the WF formulation.

The system operator must make sure that the mass is conserved in the network.
We assume that each field is connected to a junction node, and that each market
is connected to a junction node. In addition for ease of notation, we assume that
no junction nodes are connected to each other. The mass balance equations are
given as:

∑
j∈O(g)

fgjs =
∑
m∈M

(
zgms +

∑
l∈L

blgm

)
, g ∈ G, s ∈ S, (5.23)

where O(g) is the set of nodes connected to a pipeline leaving from field g. In
the junction nodes, the mass balance can be formulated as:∑

g∈I(j)

fgjs =
∑

m∈O(j)

fjms, j ∈ J , s ∈ S, (5.24)

where I(j) is the set of nodes connected to a pipeline entering node j. Finally,
a constraint for the mass conservation in the market nodes must be included:

∑
n∈I(m)

fnms =
∑
g∈G

(
zgms +

∑
l∈L

blgm

)
, m ∈M, s ∈ S. (5.25)

The following constraint is included in the model with maximum flow and
maximum value in order to ensure that the price in the secondary market is
positive:

pm − cg ·

( ∑
m′∈M′

(
zgm′s +

∑
l∈L

hlgm′s

))
≥ 0, g ∈ G, m ∈M. (5.26)

Alternatively, we could have introduced a constraint that ensured that the ISO
income was positive in total (or for all field-market combinations).

Benchmark
In Chapter 5.5 we benchmark our solutions with an optimization model where an
independent operator schedules production, routing and sale in order to maximize
the social surplus of all the players in the network. The closer the equilibrium in
our game gets to the benchmark solution, the better the strategy is with respect to
maximizing the social surplus. The mathematical formulation of the benchmark
model is given below.
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ΠBM
s = max

∑
m∈M

∑
l∈L̃

(pmsqlms + Plmsvlms)−
∑
g∈G

∑
l∈L̃

1
2
MC lgd

2
lgs, (5.27)

where MC lg is the slope of the linear supply function of producer l in field g.
In addition, we need constraints (5.20) and (5.21) from the network operator

problem presented in section 5.3. The mass balance is taken care of by:

∑
l∈L̃

dlgs =
∑

j∈O(g)

fgjs, g ∈ G, s ∈ S, (5.28)

∑
g∈G

fgjs =
∑
m∈M

fjms, j ∈ J , s ∈ S (5.29)

∑
l∈L̃

(qlms + vlms) =
∑

j∈I(m)

fjms, m ∈M, s ∈ S. (5.30)

5.4 Model properties
Our model is a General Nash Equilibrium game where the feasible regions of the
players depend on the other players’ decisions. Let Xl ∈ Rα be the strategy set
of player l with decision variables xl = (xl1, . . . , xlα) . We have |L| producers
and 1 ISO, constituting the set of players, L̄. Define β = |L| + 1. The set
X =

∏
l∈L̄Xl is the full Cartesian product of the strategy sets of individual

players and x = (xT1 , . . . , x
T
β )T (in the case that no common constraints existed,

it would be the strategy set of the game). Also define the vector x−l of all players’
decisions except player l’s and correspondingly X−l =

∏
j∈L̄|j 6=lXj .

We will define more formally the dependence between the players through
the common constraints and define the point to set mapping Kl : X−l ⇒ Xl

representing player l’s feasible region, given the actions of the other players.
Kl(x−l) ⊆ Xl, x ∈ X.
Then a generalized Nash equilibrium (GNE) is defined as a point x∗ ∈ X that

simultaneously optimizes all the players individual decision problems so that:
x∗l ∈ Kl(x∗−l), l ∈ L̄ and Πl(x∗) ≥ Πl(xl, x∗−l), xl ∈ Kl(x∗−l), l ∈ L̄ where
Π : Rαβ → R is the objective function of player l. That is, the Generalized Nash
Equilibrium is reached when no player has incentive to change his strategy given
that the other players do not change their strategy.
Pioneering results on the existence of GNE are presented in the papers of De-

breu (1952) (social equilibrium) and Arrow & Debreu (1954) (abstract economy)
that generalized the results of Nash (1950). Rosen (1965) is an early paper con-
cerning not only existence but also investigating uniqueness of solutions for a
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restricted class of problems. lchiishi (1983) gave more general results concerning
the existence of such GNE.

It is well known that Nash equilibria (with independent player strategy sets)
can be viewed as Variational Inequalities (VI), see Lions & Stampacchia (1967)
for a nice overview. An early reference formulating the generalized Nash equilib-
rium as a Quasi Variational Inequality (QVI) is Bensoussan (1974). See for exam-
ple Ferris & Pang (1997) or Facchinei & Pang (2003) for more on the relationships
between complementarity problems and Variational Inequalities. This means that
in addition to existence and uniqueness proofs following the Arrow/Debreu/Rosen
tradition, also the theory of VI may be used to analyze this, see Harker & Pang
(1990), Harker (1991) and Pang & Fukushima (2005) for good overviews of this
direction of analysis.
Following the lines of the discussion in Harker (1991), we define Fl(x∗) =
∇xlΠl(x∗l , x

∗
−l) and F (x∗) = (F0(x∗)T , . . . , F|L|(x∗)T )T Then the GNE may be

expressed as the Quasi Variational Inequality QV I(F,K(x)) :

F (x∗)T (x− x∗) ≥ 0, x ∈ K(x∗), (5.31)

where K(x) =
∏
l∈L̄Kl(x−l).

It may here be noted that a standard Nash equilibrium may be expressed as a
VI(F,K):

F (x∗)T (x− x∗) ≥ 0, x ∈ X. (5.32)
In our case, the x vector consist of the following variables: x = (b, h, d, q, f, r, z).
Theorem 5.2 from Chan & Pang (1982) (Theorem 2 in Harker (1991)) give con-
ditions for existence of a solution. We use notation in accordance with what we
defined above:

Theorem 5.4.1. Let F and K be a point-to-point mapping and point-to-set map-
ping respectively from Rαβ into itself. Suppose that there exists a nonempty com-
pact set X such that

1. K(x) ⊆ X, x ∈ X,

2. F is continuous on X,

3. K is a nonempty, continuous, closed and convex valued mapping on X.

Then there exists at least one solution to the QV I(F,K(x)) in (5.31).

For our problem this is satisfied by the definitions of F and K. F consists
of continuous, linear expressions since our objective functions are quadratic (see
Equations (5.8) and (5.14)-(5.16)). The mapping in our model is defined by
Equations (5.13), (5.23) and (5.25)-(5.26). Since all these equations are linear,
the conditions in Theorem 5.4.1 are satisfied. We then know that our Generalized
Nash Game has at least one solution.
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Common constraints
We define common constraints as constraints where decision variables for more
than one player appear. In our model, all the common constraints are continuous,
linear functions (see Equations (5.33)-(5.36)) and satisfy the necessary constraint
qualifications (LICQ). We can therefore apply Theorems 4-6 from Harker (1991)
directly. These theorems state that if F is a continuous function in the VI (F,X)
then the VI solutions are the only points in the solution set of the QVI (F,K(x))
at which the optimal dual variables λ∗ ∈ Rpβ for the common constraints are such
that λ∗0 = λ∗j , j ∈ L. The theorems also state that any strictly interior solution
(for the common constraints) of the QVI (F,K(x)) is a solution to the VI (F,X)
as described in (5.32). In general there will be several GNE in the game, but
only the VI solutions will have a common positive value of an additional unit
of a common resource (if the resource is depleted), or a zero value of a common
resource for all players (if not used in full). Further, if F is strictly monotone
there is a unique solution to the VI over X, Facchinei & Pang (2003), Theorem
2.3.3. This means that if an interior x∗ is known, the only other GNE may be
found at the boundary of the common constraints, and they will not have equal
λ’s for the common constraints.
We have focused on the VI solution in this article. A discussion of the common

constraints and the implication of requiring equal shadow prices are given in the
next sections. In our model we have the following common constraints (dual
variables belonging to each constraint are given to the right):

zgms +
∑
l∈L

hlgms ≥ 0 τgms, (5.33)

∑
j∈O(g)

fgjs =
∑
m∈M

(
zgms +

∑
l∈L

blgm

)
, ugs, (5.34)

∑
n∈I(m)

fnms =
∑
g∈G

(
zgms +

∑
l∈L

blgm

)
, ums, (5.35)

pm − cg ·

( ∑
m′∈M′

(
zgm′s +

∑
l∈L

hlgm′s

))
≥ 0, χgms. (5.36)

Constraint (5.33) gives the balance between capacity sold by the system oper-
ator and capacity traded by the large producers. If this constraint is not binding,
the large producers buy less capacity than the ISO sells. If the constraint is
binding, the large producers are buying all capacity sold by the ISO. For the
producers, the shadow price τgms then gives the value of an additional unit of
capacity bought. For the ISO, the shadow price gives the value of selling one
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additional unit of capacity and thus increasing the flow in the network with one
unit. Constraints (5.34) and (5.35) specify that the booked capacity in the net-
work must be equal to the actual flow in the pipelines. Constraint (5.34) gives
the balance for each field node, and constraint (5.35) gives the balance for each
market node. For the producers, the shadow price ugs gives the value of booking
one additional unit of capacity out of field g in the primary market. For the ISO,
the shadow price gives the value of increasing the difference between the flow
out of field g and the capacity sold, zgms. Since the flow variable is part of the
objective function for the ISO, the shadow price gives the value for the ISO of
increasing the flow out of the field. The same argument is valid for the shadow
price ums. Constraint (5.36) ensures that the price in the secondary market is
positive. The price depends on the volumes sold by the ISO and the large pro-
ducers. For both the producers and the ISO, the shadow price χgms gives the
value of selling one additional unit of transportation capacity.
For the MVF and MSS formulation, we advocate that the VI solution to the

GNE game is the important one. In this case the ISO will have made routing
decisions which make sure that all players’ marginal value of an additional trans-
portation unit is equal. In the system we have described, the tariff is fixed and
may not be changed in order to give specific incentives to the players. Hence it is
clear that the ISO has a lot of influence through the routing decisions, and such a
fair routing policy is preferable. For the MF formulation however, the VI solution
depends on the conversion of 1 Sm3 to NOK, since we relate objective functions
that are not commensurable with respect to the units. Since the marginal values
are given in different units, it may not make sense to require equality in the equi-
librium solution. The equilibrium solution will change if we change the currency
(from NOK to for instance Dollars or Euros).
We have not been able to prove that the F function is strictly monotone,

and the equilibriums we present in the numerical examples may therefore not be
unique.

5.5 Numerical examples
We consider the network illustrated in Figure 5.4. There are two large producers,
each present in both g1 and g2. In addition, there is a competitive fringe in g1

and g2.
In the following sections, we use our model to analyze several cases. We start

with a deterministic setting in which we look at the different ISO objective func-
tion alternatives and the difference between the WF formulation and the ISF
formulation. We then introduce stochasticity to our model to see how it influ-
ences the efficiency in the network.
Our model is designed for a situation where both a primary market and a
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Figure 5.4: The network used in the numerical examples.

secondary market is used to allocate capacity in the network. The ISO influences
the efficiency of the network through routing decisions and capacity distribution
in the secondary market, while the large producers influence the efficiency by
booking in the primary market and trading in the secondary market. In the
North-Sea today, the booking in the primary market is limited by predefined
booking limits and in case of overbooking a capacity allocation key is used to
distribute the scarce capacity. In our model we resemble this capacity allocation
key by requiring equal marginal value for all players in our common constraints.
Because of this allocation rule, we can use unlimited booking rights in the primary
market. In reality, the total booking rights in the North-Sea is twice the real
capacity.

In each case we solve the stochastic MPC by formulating the equilibrium con-
ditions for the problem. The equilibrium conditions consist of the aggregated
KKT-conditions for all players (see Appendix 5.A). In order to find an equi-
librium, we enter the KKT-conditions to the complementarity problem solver
PATH (Dirkse & Ferris 1995). As we discussed in Section 5.4, we focus on the
VI solution to the problem. All prices and costs are given in 1

100NOK . Since
we have inelastic demand functions in the market nodes, the social surplus will
be identical with the producer surplus in our network (which is an interesting
setting from a Norwegian perspective).
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Node/pipeline R R Kij Cij
g1 180 170
g2 185 170
j1 170 130
m1 130 115
m2 130 100
g1-j1 0.5 38.39
g2-j1 0.6 52.71
j1-m1 0.4 46.11
j1-m2 0.35 44.99

Table 5.1: The design parameters for the network

Case 1: The different ISO objective function alternatives (WF
formulation)

We start by illustrating the difference in the objective function alternatives we
have presented for the ISO. The parameters in the cost functions for the large
producers (see Equation (5.18)) are given as clg: c11 = 5

2 , c12 = 6, c21 = 3, c22 = 5,
and for the competitive fringe in field g (see Equation (5.3)): c1 = 10, c2 = 12.
The network parameters are given in Table 5.1. The prices in the two markets
are given as: pm1 = 130 and pm2 = 160. The tariff in the primary market is 10
for each field market combination.
When we solve the benchmark model (see Section 5.3), we get a total surplus for

all the players of 7220.43. This corresponds to the maximal achievable surplus in
the network. The results from the optimization with the three different objective
functions for the ISO is given in Table 5.2.
As we can see from the results, the model version where the ISO maximizes

social surplus (MSS) gives the highest total surplus in the network. The total
surplus is only 0.8% lower than the benchmark solution. The total social surplus
obtained in the MVF and MF models are, respectively, 9.41% and 1.59% smaller
than the benchmark solution. We also see that the value of flow is largest in
the MVF formulation, while the social surplus has decreased. The reason for the
decrease in social surplus is that the production costs have increased more than
the income from the spot market. The reason is that the VI solution requires
equal marginal values for all players in the common constraints. Since the ISO
only considers the income from the flow in the network (and not the production
costs), the ISO has a large marginal value of flow and therefore forces inefficient
production decisions from the producers.
The equilibrium for the MF model is, as discussed in Section 5.4, difficult to
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Max social Max value Max flow
surplus (MVF) (MF)
(MSS)

Competitive fringe g1 (NOK ) 258.49 194.79 222.22
Competitive fringe g2 (NOK ) 704.17 704.17 704.17
Producer 1 (NOK ) 3085.89 2595.33 3129.77
Producer 2 (NOK ) 2435.35 2282.92 2410.73
ISO profit (NOK ) 678.15 763.51 638.5
Social surplus (NOK ) 7162.05 6540.72 7105.39
Flow (Sm3) 80.32 88.85 76.35
Value of flow (NOK ) 11668.39 12870.88 11207.20

Table 5.2: Results from the different ISO objective functions. WF formulation.

interpret since the units are different in the objective functions for the ISO and
the large producers. If we change the currency (corresponds to changing the
weighting of the flow for the ISO), the equilibrium also changes. By using a
currency of 1

100NOK we put the emphasis on the large producers, and since the
social surplus corresponds to producer surplus in our models, we get a solution
close to the benchmark. In Table 5.3 we see the results from changing the currency
from 1

100NOK to EUR (this is done by changing the weighting of the flow for the
ISO, so the units are comparable with the results in Table 5.2). While the flow
in the MF formulation was the lowest among the three alternatives in Table 5.2,
it has increased to the maximum possible flow in the network in Table 5.3.
In the MSS and the MVF formulation, the change of currency will not affect

the solutions, and in the remaining examples we will therefore focus on the MSS
and the MVF formulations.

Case 2: ISF versus WF formulation

In this example we look at the difference between using the WF formulation
and the ISF formulation (see Section 5.3 for a discussion of how the ISF capac-
ities are determined). We use the same parameters as in the previous example
(Section 5.5). Every flow pattern obtained with the ISF formulation is feasible
within the WF formulation. In the ISF formulation the capacity in the network
is therefore more restricted than in the WF formulation (the reason for including
the ISF formulation is that it is a common approach for economic analysis in gas
networks).
The results from this optimization is shown in Table 5.4. We see the same

pattern in these results as we saw for the WF formulation: the MSS formulation
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Max flow
(MF)

Competitive fringe g1 (NOK ) 174.18
Competitive fringe g2 (NOK ) 704.17
Producer 1 (NOK ) 2328.40
Producer 2 (NOK ) 2097.78
ISO profit (NOK ) 785.86
Social surplus (NOK ) 6090.39
Flow (Sm3) 91.09
Value of flow (NOK ) 13191.20

Table 5.3: Results from the MF formulation with a larger weight on the ISO
objective function.

gives the highest social surplus in the network. Compared with the WF formula-
tion, the total surplus is reduced with 2.58% for the MSS formulation and 6.85%
for the MVF formulation.
The importance of using the WF formulation depends on the network structure,

the uncertainty in prices and the volume uncertainty in the TOP-contracts. Large
fluctuations (as is common in natural gas prices) give more value to flexibility
and therefore the WF formulation will improve the efficiency in the network. The
correlation between prices is also important. High correlation may result in less
difference between the ISF and the WF formulation (since the flexibility in the
network is less important in this case).

Max social Max value
surplus

Competitive fringe g1 (NOK ) 174.42 174.42
Competitive fringe g2 (NOK ) 707.18 707.18
Producer 1 (NOK ) 2599.82 2329.55
Producer 2 (NOK ) 2904.06 2098.80
ISO profit (NOK ) 591.71 782.96
Social surplus (NOK ) 6977.19 6092.91
Flow (Sm3) 71.97 91.10
Value of flow (NOK ) 10705.93 13192.28

Table 5.4: Results from the different ISO objective functions. ISF formulation.
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Node/pipeline R R Kij

g1 190 170
g2 185 170
j1 170 130
m1 130 100
m2 130 90
g1-j1 0.5
g2-j1 0.6
j1-m1 0.4
j1-m2 0.35

Table 5.5: The design parameters for the network

Case 3: The effect of stochasticity

In this example we look at the effect of stochasticity in our model. We use the
network parameters in Table 5.5, and the following cost parameters for the large
producers clg: c11 = 3, c12 = 4, c21 = 4, c22 = 7

2 , and for the competitive fringe
in field g: c1 = 9, c2 = 9. The tariffs in the primary market are put at 10 for all
field-market combinations.
The effects of stochasticity are largest when the price is volatile, and the cor-

relation between the market prices is low, or negative. If volatility is low, or
correlation is very high, the optimal booking in the first stage varies less be-
tween the scenarios. When the optimal booking in the first stage is similar in all
scenarios, the effect of stochasticity is reduced.
We have chosen to use negative correlation and uniformly distributed prices

between 75 and 225. Table 5.6 shows the results from the optimization. The
benchmark solution in this case is 9008.59. We see that the total expected social
surplus in the network has been reduced with 3.68% and 5.92% for the MSS and
MV formulation, respectively, compared to the benchmark solution. The reason
for these results is the capacity allocation we have chosen (focus on the VI solu-
tion), and the fact that all booked capacity must be used. In a stochastic setting,
the capacity allocation in the primary market is done such that the marginal unit
goes to the player that has the largest expected marginal value. When prices are
very volatile, this means that the large producers in some scenarios have more
capacity than they ideally would have wanted to have.
We have also looked at the wait-and-see solution (Madansky 1960) and ex-

pected result of using the expected value solution (Birge & Loveaux 1997). In
the wait-and-see solution (WSS), the 15 scenarios are solved independently and
we then find the expected value over the 15 scenarios. That is, we assume that
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Booking limit = +∞ Wait-and-see solution
Max social Max value Max social Max value
surplus surplus

Competitive fringe g1 441.91 420.63 453.98 581.19
Competitive fringe g2 621.50 637.82 726.52 786.71
Producer 1 (NOK ) 3180.73 3275.30 3666.62 3462.53
Producer 2 (NOK ) 2927.52 2985.92 3303.10 3124.28
ISO profit (NOK ) 1505.52 1155.55 758.84 765.28
Social surplus (NOK ) 8677.18 8475.30 8909.06 8719.99
Flow (Sm3) 94.43 99.84 84.93 96.89
Value of flow (NOK ) 14522.37 15040.02 13660.29 14830.25

Table 5.6: Results from the model with stochasticity. Columns 2-3 shows the
result with unlimited booking for each producer, and each field-market
combination, and columns 4-5 shows the wait-and-see solution with
unlimited booking.

the large producers somehow get perfect information of the future before they
make their decisions in the first stage. The difference between the WSS solution
and the solution from the stochastic model is the expected value of perfect in-
formation (EVPI). EVPI tells us how much each player would have been willing
to pay for knowing the outcome in the second stage. The results from this test
(columns 4-5 in Table 5.6) shows that the total surplus in the network has in-
creased drastically in the WSS solution. The total expected social surplus is now
only 1.1% lower than the benchmark solution for the MSS formulation, and 3.2%
for the MVF formulation.
In order to find the the expected result of using the expected value solution

(EEV), we first solve a deterministic problem where the stochastic variables are
represented with their expected values (EVP). We then use the booking decisions
from the EVP in the stochastic problem. The results from the EEV formulation is
shown in Table 5.7. For the MSS formulation, we see that the stochastic solution
is 1.77% higher than the EEV solution. The differences are small for the MVF
formulation.

The situation without a primary market

We have also tested the model without a primary market (booking limits equal
to zero), and found that the pricing mechanism in the secondary market was
inefficient in this case. Since the price of capacity is based only on one producer’s
marginal cost (the competitive fringe), we found equilibria with a large distance
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Max social Max value
surplus

Competitive fringe g1 (NOK ) 420.73 420.63
Competitive fringe g2 (NOK ) 613.84 696.77
Producer 1 (NOK ) 3262.36 3216.85
Producer 2 (NOK ) 2994.11 2892.63
ISO profit (NOK ) 1235.14 1236.56
Social surplus (NOK ) 8526.18 8463.44
Flow (Sm3) 95.84 99.84
Value of flow (NOK ) 14587.55 15040.02

Table 5.7: Results form the EEV formulation.

to the benchmark solution. For each of the large producers, a decision to increase
production will lead to an increase in production cost in addition to an increase
in price of transportation capacity (when hlgms is increased, the price of capac-
ity increase). It may therefore be beneficial for the large producer to decrease
the production even if the marginal production cost is lower than the marginal
revenue.
In order to represent a situation without a primary market, a different market

clearing mechanism in the secondary market is needed. As illustrated in the
numerical examples in this section, the market clearing mechanism we have chosen
works well in the presence of a primary market. The design and tests of new
clearing mechanisms is an interesting topic for future research.

5.6 Conclusions

We have presented a stochastic MCP model based on Generalized Nash Equilib-
rium for analyzing a capacity distribution system with two stages: a primary
market where only privileged players can participate and an open secondary
market. This system is based on the existing capacity distribution system in
the North-Sea. We have compared the results from our model with a benchmark
model where a central planner with full information maximizes social surplus in
the network. We have shown that there exists at least one equilibrium solution
(the VI solution) to our models.
We found that the MSS formulation for the ISO lead to a higher total social

surplus in the network than the alternatives. In the deterministic setting we found
a difference of 0.8% between the benchmark solution and the MSS solution. The
formulation requires that the system operator has full information regarding the
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cost structure of the producers in the fields.
An alternative that we have considered in this paper is to maximize value of

flow to the market nodes. In this case we only need to assume that the ISO
knows the market prices of natural gas. In the deterministic case, the distance to
the benchmark solution was 9.41% for the MVF formulation. The social surplus
for the MVF formulation was 8.6% lower than the social surplus in the MSS
formulation for the deterministic case, and 2.3% lower in the stochastic case. The
results from the WF formulation were highly dependent on the chosen weighting
in the objective functions.
Secondly, we found that stochasticity is important for our results. The book-

ing rights lead to suboptimal solutions in some of the scenarios when prices are
uncertain. The WSS solution indicated a high value of perfect information (so-
cial surplus increased with 2.67% for the MSS formulation). The EEV solution
illustrated that there was a value of solving the stochastic problem (social surplus
increased with 1.77% for the MSS formulation).
Finally we found that modelling the pressure constraints in the network is

important. In this article we have set the fixed capacities such that the total
throughput of the system is maximized. We still found that the flexibility in the
WF formulation was valuable. In our example, we found that the WF formulation
gave an increase of 2.65 % for the MSS formulation.
Given that the value of the flow in the pipelines in the North-Sea in 2006 was

approximately 130 billion NOK, the relatively low percentage differences we have
shown in this paper still amounts to a substantial amount of money.
Possible future extensions of the model are other market clearing mechanisms

in the secondary market, inclusion of elastic demand functions in the spot markets
for natural gas, the possibility for the large producers to hold back capacity in
the secondary market and strategic behavior in the primary market.
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Appendix

5.A The equilibrium conditions

In this section we give the equilibrium conditions for our model. Shadow prices
for constraints are introduced directly in the Lagrangian function. The matching
of shadow prices with constraints can also be seen from the KKT-conditions. We
distinguish two types of shadow prices: those that are unrestricted in sign (URS)
and those that are restricted in sign. For the shadow prices that are restricted in
sign, we use the following notation for the complementarity condition with the
belonging constraint: G(x) − a ≤ 0 ⊥ $ ≥ 0. The complementarity condition
states that either G(x)− a or $ must be equal to zero.

The large producers

The KKT-conditions for producer l is found through the Lagrangian function:
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Ll =−
∑
g∈G

∑
m∈M

Tgmblgm + γlgm (Blgm − blgm)

+
∑
s∈S

φs

[ ∑
m∈M

(pmsqlms + Plmvlms)

]

+
∑
s∈S

φs

∑
g∈G

∑
m∈M

hlgms

(
pms − cg

( ∑
m′∈M

(
zgm′s +

∑
l′∈L

hl′gm′s

)))
−
∑
s∈S

φs

∑
g∈G

Clg(dlgs)


+
∑
s∈S

φs

[
µ1lgs

( ∑
m∈M

(blgm − hlgms)− dlgs

)]

+
∑
s∈S

φs

µ2lms

∑
g∈G

(blgm − hlgms)− qlms − vlms


+
∑
s∈S

φs [αlgms (blgm − hlgms)]

+
∑
s∈S

φs

[
τgms

(
zgms +

∑
l∈L

hlgms

)]

+
∑
s∈S

φs

ugs
 ∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs


+
∑
s∈S

φs

ums
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms


+
∑
s∈S

φs

[
χgms

(
pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

)))]
.

Finding the derivative of the Lagrangian function with respect to the decision
variables we get the KKT-conditions for optimality:
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∂Ll
∂blgm

= −Tgm − γlgm

+
∑
s∈S

φs (µ1lgs + µ2lms + αlgms + ugs + ums) ≤ 0 ⊥ blgm ≥ 0, (5.37)

∂Ll
∂γlgm

= Blgm − blgm ≥ 0 ⊥ γlgm ≥ 0, (5.38)

∂Ll
∂qlms

= pms − µ2lms ≤ 0 ⊥ qlms ≥ 0, (5.39)

∂Ll
∂dlgs

= − ∂Clg
∂dlgs

− µ1lgs ≤ 0 ⊥ dlgs ≥ 0, (5.40)

∂Ll
∂hlgms

= pms − cg
∑
m′∈M

zgm′s − cg
∑
l′∈L

∑
m′∈M

hl′gm′s − cg
∑
m′∈M

hlgm′s

− cg
∑

m′∈M′
χgm′s − µ1lgs − µ2lms − αlgms + τgms = 0, hlgms URS , (5.41)

∂Ll
∂µ1lgs

=
∑
m∈M

(blgm − hlgms)− dlgs = 0, µ1lgs URS , (5.42)

∂Ll
∂µ2lms

=
∑
g∈G

(blgm − hlgms)− qlms − vlms = 0, µ2lms URS , (5.43)

∂Ll
∂αlgms

= blgm − hlgms ≥ 0, ⊥ αlgms ≥ 0, (5.44)

∂Ll
∂τgms

= zgms +
∑
l∈L

hlgms ≥ 0, ⊥ τgms ≥ 0, (5.45)

∂L

∂ugs
=
∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs = 0, ugs URS , (5.46)

∂L

∂ums
=
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms = 0, ums URS , (5.47)

∂L

∂χgms
= pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

))
≥ 0, ⊥ χgms ≥ 0. (5.48)

The network operator
For the network operator, we present the KKT-conditions for the three different
objective function alternatives. First the maximize flow objective.
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Maximize flow The Lagrangian function for the system operator can be formu-
lated as 1:

Ls =
∑
s∈S

φs

 ∑
m∈M

∑
i∈I(m)

fims + ηnils
(
K1
nilrns −K2

nilris − fnis
)

+
∑
s∈S

φs

ugs
 ∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs


+
∑
s∈S

φs

[
χgms

(
pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

)))]

+
∑
s∈S

φs

ujs
 ∑
m∈O(j)

fjms −
∑
g∈I(j)

fgjs


+
∑
s∈S

φs

ums
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms


+
∑
s∈S

φs
[
ω1ns

(
Rn − rns

)
+ ω2ns (rns −Rn)

]
+
∑
s∈S

φs

[
τgms

(
zgms +

∑
l∈L

hlgms

)]
.

KKT-conditions The KKT-conditions:

1We have simplified the Weymouth equation such that K1
nil and K2

nil represents the constants
in the expression
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∂L

∂fgjs
= −ηgjs − ugs − ujs ≤ 0 ⊥ fgjs ≥ 0, (5.49)

∂L

∂fjms
= 1− ηjms + ujs − ums ≤ 0 ⊥ fjms ≥ 0, (5.50)

∂L

∂zgms
= −cg

∑
m′inM′

χgm′s + ugs + ums + τgms ≤ 0 ⊥ zgms ≥ 0, (5.51)

∂L

∂rgs
=

∑
j∈O(g)

(∑
l∈L

ηgjlsrgsK
1
gjl

)
− ω1gs + ω2gs ≤ 0 ⊥ rgs ≥ 0, (5.52)

∂L

∂rms
=

∑
j∈I(m)

(
−
∑
l∈L

ηjmlsrmsK
2
jml

)
− ω1ms + ω2ms ≤ 0 ⊥ rms ≥ 0, (5.53)

∂L

∂rjs
=
∑
g∈I(j)

(
−
∑
l∈L

ηgjlsrjsK
1
gjl

)

+
∑

m∈O(j)

(∑
l∈L

ηjmlsrjsK
2
jml

)
− ω1js + ω2js ≤ 0 ⊥ rjs ≥ 0, (5.54)

∂L

∂ugs
=
∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs = 0, ugs URS , (5.55)

∂L

∂ujs
=

∑
m∈O(j)

fjms −
∑
g∈I(j)

fgjs = 0, ujs URS , (5.56)

∂L

∂ums
=
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms = 0, ums URS , (5.57)

∂L

∂χgms
= pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

))
≥ 0, ⊥ χgms ≥ 0 (5.58)

∂L

∂ω1ns
= Rn − rns ≥ 0 ⊥ ω1ns ≥ 0, (5.59)

∂L

∂ω2ns
= rns −Rn ≥ 0 ⊥ ω2ns ≥ 0, (5.60)

∂L

∂ηnis
= Kni

√
r2
ns − r2

is − fnis ≥ 0 ηnis ≥ 0, (5.61)

∂Ll
∂τgms

= zgms +
∑
l∈L

hlgms ≥ 0, ⊥τgms ≥ 0. (5.62)
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Maximize value The Lagrangian function for the system operator can be for-
mulated as:

L =
∑
s∈S

φs

 ∑
m∈M

∑
i∈I(m)

pms

(
fims −

∑
l∈L

vlms

)
+ ηnils

(
K1
nilrns −K2

nilris − fnis
)

+
∑
s∈S

φs

ugs
 ∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs


+
∑
s∈S

φs

[
χgms

(
pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

)))]

+
∑
s∈S

φs

ujs
 ∑
m∈O(j)

fjms −
∑
g∈I(j)

fgjs


+
∑
s∈S

φs

ums
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms


+
∑
s∈S

φs
[
ω1ns

(
Rn − rns

)
+ ω2ns (rns −Rn)

]
+
∑
s∈S

φs

[
τgms

(
zgms +

∑
l∈L

hlgms

)]
.

KKT-conditions The KKT-conditions:
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∂L

∂fgjs
= −ηgjs − ugs − ujs ≤ 0 ⊥ fgjs ≥ 0, (5.63)

∂L

∂fjms
= pms − ηjms + ujs − ums ≤ 0 ⊥ fjms ≥ 0, (5.64)

∂L

∂zgms
= −cg

∑
m′∈M′

χgms + ugs + ums + τgms ≤ 0 ⊥ zgms ≥ 0, (5.65)

∂L

∂rgs
=

∑
j∈O(g)

(∑
l∈L

ηgjlsrgsK
1
gjl

)
− ω1gs + ω2gs ≤ 0 ⊥ rgs ≥ 0, (5.66)

∂L

∂rms
=

∑
j∈I(m)

(
−
∑
l∈L

ηjmlsrmsK
2
jml

)
− ω1ms + ω2ms ≤ 0 ⊥ rms ≥ 0,

(5.67)

∂L

∂rjs
=
∑
g∈I(j)

(
−
∑
l∈L

ηgjlsrjsK
1
gjl

)

+
∑

m∈O(j)

(∑
l∈L

ηjmlsrjsK
2
jml

)
− ω1js + ω2js ≤ 0, ⊥ rjs ≥ 0, (5.68)

∂L

∂ugs
=
∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs = 0 ugs URS , (5.69)

∂L

∂ujs
=

∑
m∈O(j)

fjms −
∑
g∈I(j)

fgjs = 0, ujs URS , (5.70)

∂L

∂ums
=
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms = 0 ums URS , (5.71)

∂L

∂χgms
= pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

))
≥ 0, ⊥ χgms ≥ 0 (5.72)

∂L

∂ω1ns
= Rn − rns ≥ 0 ⊥ ω1ns ≥ 0, (5.73)

∂L

∂ω2ns
= rns −Rn ≥ 0 ⊥ ω2ns ≥ 0, (5.74)

∂L

∂ηnis
= Kni

√
r2
ns − r2

is − fnis ≥ 0 ηnis ≥ 0, (5.75)

∂Ll
∂τgms

= zgms +
∑
l∈L

hlgms ≥ 0, ⊥τgms ≥ 0. (5.76)
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5.A The equilibrium conditions

Maximize social surplus The Lagrangian function for the system operator can
be formulated as:

L =
∑
s∈S

φs

 ∑
m∈M

∑
i∈I(m)

pms

(
fims −

∑
l∈L

vlms

)
+
∑
m∈M

∑
l∈L

Plmvlms


−
∑
s∈S

φs

∑
g∈G

1
2
MC g

 ∑
j∈O(g)

fgjs

2


+
∑
s∈S

φs
[
ηnils

(
K1
nilrns −K2

nilris − fnis
)]

+
∑
s∈S

φs

ugs
 ∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑
j∈O

(g)fgjs


+
∑
s∈S

φs

[
χgms

(
pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

)))]

+
∑
s∈S

φs

ujs
 ∑
m∈O(j)

fjms −
∑
g∈I(j)

fgjs


+
∑
s∈S

φs

ums
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms


+
∑
s∈S

φs
[
ω1ns

(
Rn − rns

)
+ ω2ns (rns −Rn)

]
+
∑
s∈S

φs

[
τgms

(
zgms +

∑
l∈L

hlgms

)]
.
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∂L

∂fgjs
= −MC g

∑
j′∈O(g)

fgjs + ηgjs − ugs − ujs ≤ 0 ⊥ fgjs ≥ 0, (5.77)

∂L

∂fjms
= pms − ηjms + ujs − ums + τgms ≤ 0 ⊥ fjms ≥ 0, (5.78)

∂L

∂zgms
= −cg

∑
m′∈M′

χgms + ugs + ums ≤ 0 ⊥ zgms ≥ 0, (5.79)

∂L

∂rgs
=

∑
j∈O(g)

(∑
l∈L

ηgjlsrgsK
1
gjl

)
− ω1gs + ω2gs ≤ 0 ⊥ rgs ≥ 0, (5.80)

∂L

∂rms
=

∑
j∈I(m)

(
−
∑
l∈L

ηjmlsrmsK
2
jml

)
− ω1ms + ω2ms ≤ 0 ⊥ rms ≥ 0, (5.81)

∂L

∂rjs
=
∑
g∈I(j)

(
−
∑
l∈L

ηgjlsrjsK
1
gjl

)

+
∑

m∈O(j)

(∑
l∈L

ηjmlsrjsK
2
jml

)
− ω1js + ω2js ≤ 0, ⊥ rjs ≥ 0, (5.82)

∂L

∂ugs
=
∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs = 0 ugs URS , (5.83)

∂L

∂ujs
=

∑
m∈O(j)

fjms −
∑
g∈I(j)

fgjs = 0, ujs URS , (5.84)

∂L

∂ums
=
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms = 0 ums URS , (5.85)

∂L

∂χgms
= pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

))
≥ 0, ⊥ χgms ≥ 0 (5.86)

∂L

∂ω1ns
= Rn − rns ≥ 0 ⊥ ω1ns ≥ 0, (5.87)

∂L

∂ω2ns
= rns −Rn ≥ 0 ⊥ ω2ns ≥ 0, (5.88)

∂L

∂ηnis
= Kni

√
r2
ns − r2

is − fnis ≥ 0 ηnis ≥ 0, (5.89)

∂Ll
∂τgms

= zgms +
∑
l∈L

hlgms ≥ 0, ⊥τgms ≥ 0. (5.90)
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